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THE EXISTENCE AND SOME PROPERTIES OF SOLUTIONS OF A 
DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT 

Jozef BANAS, Urszula STOPKA 

Abstract: The paper contains a theorem on existence 
and asymptotic behavior of solutions for some differential 
equation with deviated argument and with implicit derivative. 
Considerations are based on the notion of measure of noncom-
pactness and the fixed point theorem of Darbo type. 
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1• Introduction. The theory of differential equations 

with deviated argument was developed by several mathematici­

ans (cf. the well known monograph [H])« At most there have 

been studied the functional differential equations of the 

form 

(0) x'= f(t,x(g>(t))), 

where the unknown function x(t) must additionally satisfy so­

me initial condition (see e.g. 13,4,7,8,9,10,13])* Moreover, 

there have been examined also solutions of differential equa­

tions with deviated argument in the MySkis 's sense (see [8, 

l^tH], for example). 

This paper is devoted to the study of existence and a-

symptotic behavior of some differential equation with devia-
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ted argument more general than the equation (0), i.e. such 

that the right hand side of this equation depends on the de­

layed derivative. 

We will use the method of a fixed point theorem of the Darbo 

type L6J which is based on the notion of a so-called measure 

of noncompactness. This notion was intensively studied in the 

last years by several authors. The most expository papers on 

this topic are those of DaneS [53, Sadovskii [12] and Banas 

and Goebel [2]. 

In this paper we will apply measures of noncompactness defi­

ned in the axiomatic way in the work [2]. 

2. Notations and basic definitions. Denote by E a fix­

ed Banach space with the zero element 6 and with norm j) II . 

Further, let us denote: 

?3tg - the family of all nonempty and bounded subsets of 

the space £, 

% - the family of all nonempty and relatively compact 

subsets of E. 

If we have some nonempty family % of subsets of E then 

we will denote by %c its subfamily consisting of all closed 

sets. 

Moreover, we will use standard notations (cf. 12]), for exam­

ple K(x,r) will denote the ball centered at x and with radius 

r, the symbol X denotes the closure of the set X, the symbol 

Conv X denotes the closed convex closure of a set X, and so 

on. 

Now we recall the definition of a measure of noncompact­

ness from i* 21 (cf. also t\l). 
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Definition I. A function <a: &#£—-»< 0,-fao) wil l be cal­

led a measure of noncompactness i f i t sat i s f ies the following 

conditions: 

1 the family {? =- [X e. ffl^i (UL(X.) = Ol i s nonempty and 

2° XcX — ^ ( ct (X)^ ( ^ (I) , 

3° ^ ( X ) = ^ ( X ) , 

4° rMConv X) * ^ U ) , 

5° ^ ( a x + {1-X)Y)^A(*,W) + ( l - ^ ) ^ ( Y ) , for a l l 

Ol € < 0fT> f 

6° i f x^e 3&|, X ^ c X ^ , for n « 1 , 2 f . . . and i f 

S?«^(v * °thcn -̂A V-
The family J° described in 1° is said to be a kernel of 

the measure ^ and will be denoted by ker /CL . It may be shown 

that (ker ̂ o ) c forms a closed subs pace of the space W g in 

topology generated by the Hausdorff distance 1.21. For other 

properties of measures of noncompactness (in the above sense) 

and their examples see [2J. 

Let us notice that the set X ^ in axiom 6° is a member of 

ker (JL I 2l. This fact is used in the fixed point theorem of 

the Darbo type which will be given below. 

First we recall the following definition. We assume that 

u, is a given measure of noncompactness on the space E. 

Definition 2 £21. Let McE be a given nonempty set and 

let T:M—> E be a continuous transformation such that TX e. 

e W-g for any X e 3ftg. A transformation T will be called 

^-contraction if there exists a constant ke<0,1) such that 

^(TX)^k ftU) for each set X e M%. 
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Theorem 1 111. Let C be a nonempty, closed, convex and 

bounded subset of the space E and let T:C—^ C be a fju-con­

traction. Then the set Fix T = [x€C:Tx = x] is nonempty and 

Fix T e ker ^ * 

For the details of the proof we refer to [1,2]. Let us 

only mention that the information that the set Fix T of fix­

ed points of transformation T belongs to ker <U/ plays an im­

portant role in the characterization of solutions of some 

functional equations (cf. £2]). 

3- The space C«0,+ oo) ,p(t)). Let p(t) be a given func­

tion defined and continuous on the interval <0, + eo) and tak­

ing real positive values. Denote by C«0,+<_*?) ,p(t)) = C the 

set of all real continuous functions x(t), defined on the in­

terval <0,+<oo) and such that 

sup [1 x(t)lp(t):t>03<+ oo . 

It is easy to check that C forms a real Banach space with 

respect to the norm 

llxil = sup[lx(t)|p(t):t20j 

(cf. m i ) . 

Next, for an arb i t ra ry x£C , X e dH c , T;>0 and 6 - ^ 0 l e t 
P 

us denote: 

coT(xfe) = s u p [ | x ( t )p ( t ) - x ( s )p ( s ) | : t , s e<0 ,T> , 

I t-s U s 3 , 

co^OCt & ) s sup [ o)T(xf & ) : x e X l , 

coT(X) = lim c.>T(Xf e ) , 

oiAX) = lim c^CX), 
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a(X) -= lim sup i sup i I x(t) ' | p U h t r T J ? -

ftUX) * ^>0(X) + a(X). 

The function /a,(X), defined by the last formula, is the mea­

sure of noncompactness in the space C E2J. Its kernel is the 

family of all bounded sets consisting of functions which are 

equicontinuous on each compact interval and such that 

lim x(t)p(t) = 0 uniformly with respect to x«sX [2.]. For ot­

her properties of the measure /UL, see C23. 

We will still use the following notation. If xsC then 
T S> (x,S ) will denote the usual modulus of continuity of x on 

the interval <0,T>, i.e. 

S>T(X, e) = sup [J x(t) - x(s)l :lt-sU e ,t,s £<0,T>J„ 

4. Differential equation with deviated argument and its 

solutions. Consider now the following differential 

equation 

(1) x#(t) = f(t,X(H(t)),x'(h(t))), tzO 

with the initial condition 

(2) x(0) « 0, 

where x(t) is an unknown function. 

We will seek continuously differentiable solutions of the 

problem (1) - (2). 

Let us assume that 

(i) the functions h, H:<0,+<xi)—-><0,+oo) are continu­

ous, 

(ii) f: <0,+«))><RxR—> R is a continuous function. 

Under the above hypotheses we may put 

x'(t) - y(t) 
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and transform the equation (1) with condition (2) into the 

following functional-integral equation 

(3) y(t) » f(t, jy(s)ds, y(h(t))), t> 0. 

In the sequel we will examine the equation (3). Apart from 

the assumptions (i),(ii) we will additionally assume that: 

(iii) the function f(t,x,y) satisfies the Lipschita con­

dition with respect to the last variable i.e. 

if(t,x,yi) - f(t,x,y2)Uk|ly| -y 2l, k-ZO, 
L,(t) 

(iv) |f(t,x,0)U L0(t) + e ' ixl, where LQ: <0,+a>)-^ 

—-><0,+ ot») is m continuous function such that 

lim L (t)exp (- X hjs)da) » 0 and L.: <0,+o>)—i* R is a 
t~>Gc o Jv o i L.(t) 
continuous decreasing function such that ,li--* te « 0, 

(v) H(t)2tf lim (H(t) - t) « 0 and H(t) is such that 
t -»©o 

sup E J Lo(s)ds:t^0] * K^ + <x>* 

(•i) h(t)£t and JLim (t - h(t)) * 0. 

In what follows l e t us define 
L,(s) 

, ' (L (s) + < J0 

Denote by CL the space C«0,+*>), e "
M L ( t > ) , where M is some 

arbitrarily fixed constant, M*>t. 

Notice that in view of (iv) and (v) the number 

*, - s«p[ ( e
Lt ( t )/ H ( t>(»> d.).-«L(t).teo3 

t 

is finite. 

Now we may formulate the main theorem of our paper. 

Theorem 2. Under the assumptions ( i ) - ( v i ) , i f in addi­

tion k * kj + k2 + j |<1 and i f the function f ( t , x , y ) sat i s f ies 
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the condition (vii) |f(tfx|fy) - f(tfx2.y)| « o(e
ML(t)) if 

t tends to infinity, uniformity with respect to x.-x^^y^B, 

then the equation (3) has at least one solution y * y(t) 

which belongs to the space C^ and such that y(t) « o(eMW ') 

if t tends to infinity. 

Proof. Consider the transformation F defined on the spa­

ce C^ by the formula 
Uf±) 

(5y)(t) ' f(t, f y(.)d.,y(h(t)))t t^O. 

Actually, for any yeC^ the function (Jy)(t) ie continuous. 

Moreover, using our assumptions we have 

l(Jy)(t)|e-ML(t)i lf(t, ,/;Hrti(s)ds,y(h(t))) -

- f(t, /o
rirty(s)ds,0) | .-*-<-> + , f ( t t f»%iB)iSf0)\ e - - W t ) , 

- . k . i y ( h ( t ) ) | e-ML<*> • CLe(t) • .
L'<t)/0

Htt|y(.)ld.J.-ML<t>^ 

^k.(y(h(t»l .-M«h(t))eMO(h(t>>-L(t))+ 

• [L0(t) + 1,1 e
L ' Y C i « M L ( 8 ) ^ ••*"*>**t lly« • 

^L.(t) f
Hft)

eML(s)d8j e-ML(t). 

Hence, denoting g(t) * L 0 ( t )e~ M L ( t )
f we get 

| ( ^ ) ( t ) t e - M L ( t ) ^ k t My|| • g ( t ) 4 . | | | y l l ( J* M(L0(s) • 

«. e^(a) )#JML(s)d| | ) t-ML(t) + ^ | | y ( U g ( t ) + (k. + * 2 + | ) fly!) . 

Thus 

HJJrlU s u p £ g ( t ) : t > O j • kHyll 

so that the trareformation F maps the space CL into i t s e l f . 
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Moreover, from the obtained evaluation we conclude that for 

r * (1~k)~ sup [ g(t) :tz 02 the operator F maps the ball 

K(9,r) into itself. 

Now we prove continuity of F on the ball K(8,r). Let y, yn e. 

e. K(6-,r) and let yn converge to y in the space C^, Keeping 

our assumptions in mind, we have 

If(t, /HCtyn(s)ds,yn(h(t)))e*
ML(t) - f (t, /HCty(s)ds,y(h(t))) 

e"ML(t)l A \ tit, J[
H"yn(s)d8,yn(h(t))) -

- f(t, fHC"y_(8)d8,y(h(t)))| e _ M L ( t ) + 
0 

* |f(t, /HUyn(8)d8;y(h(t))) - f(t,/rt(ty(s)d8,y(h(t)))|e-MI,(t^ 

iic,)yn(h(t)) - y(h(t))!e-
ML(h(t)) * \ t (t, f Httyn(8)d8,y(h(t)))-

- f(t, rHtÍy(8) d8,y(h(t)))Íe"ML(t). 
*'rt 

From the above inequality it follows that it suffices to 

prove that the term 

tf(t, fHUyn(s)d6,y(h(t))) - f(t,J^
(ty(s)ds,y(h(t)))|e'ML(t) 

tends to 0 as n tends to infinity. 

To do i t l e t us f i x T > 0 and l e t e y 0 be arb i trar i ly smal l . 

Taking into account the uniform cont inui ty of the function 

f ( t , x , y ) on the compact s e t , for t € < 0 , T ? w e obtain 

i f ( t , / H ( t ) y n ( s ) d s , y ( h ( t ) ) ) - f ( t , / * % ( s ) d s , y ( h ( t ) ) ) | £ & 

for n s u f f i c i e n t l y l arge . 

On the other hand, choosing T su i tably large and using 

the assumption ( v i i ) , for t £ T we get 
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l f ( t t f y Y , (s)ds ty(h(t))) - f ( t f fH C iy(s)ds,y(h(t))) |e"M L ( t )^e .J 

which finally gives the desired continuity. 

Further, le t us f i x T>0, Ye K(8,r) and y e Y. In virtue 

of our assumptions, for an arbitrary tzT we get 

l ( I y ) ( t ) | e - M L ( t ) - k . | y ( h ( t ) ) i e - M L ( h ( t ) > e M r L ( h ( t ) ) - L ( t } J + 

+ . L | ( t ) [ f T | y (a ) ld . • | t | ; r ( . ) | d . + / 1 y ( « ) l d . ] e - M L ( t ) . i 
JO "T t 

- k t l y ( h ( t ) ) | e " M L ( h ( t ) ) + g(t ) + Te ' r + 

+ ( e L , ( t ) J : H W , r . M L ( 8 ) d. )e - M L ( t )
 + 

• ( « L l < t ) j ; t i y ( . ) l e - M L ( 8 > e M L ( 8 ) d s ) e - M L ( t ) ^ 

^ k , | y ( h ( t ) ) i e - M L ( h ( t ) ) + g(t) + rTeL ' ( T ) • 

+ r e
L 1 ( t )

e MCL(H(t) ) -L(t )J ( H ( t ) . t ) + 

+ ( t»«Eriy(t)l.-ML(t ))[J ; T
1 ( L 0 ( S ) + 

+ e L l ( " ) ) M e " L ( 8 ) d . ] e - i M L ( t )
i k 1 l y ( h ( t ) ) l e - M L ( h ( t ) ) + g(t ) + 

+ Tre L , ( T ) + r(H(t) - t )eMCL(H(t)-L(t»e
L1 ( t> + 

+ H .uBrly(t)|e-
ML(t>* (£ + -, K ^ f ^ i y U ) ! •

_MI,(t)> + g"> + 

+ rT. L l ( T > + r(H(t)) - t).«CL(H(t))-L(t).le
L1(t). 

Hence, owing to the fact that 

li. eL'(t)<H(t) - t).««".(H(t))-L(t)J, xiM g(t) -

*"*" L,(t) *""° . , , 
* jJlPL** s O and taking into account that lim h(t) » oo 
we ha*« 
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(4) a(re)=-U*t • ! > • < - > * - a d ) . 

On the other hand, fixing an arbitrary e > 0, T>0 and ta­

king t 8«<0,T> ««ch that | t - a | £. e , we may calculate the 

following sequence of inequalities 

l (Jy ) ( t ) e - M L ( t ) - W ( « > e - " L ( " > i ^ l ( - > > ( t ) . - M L ( t ) -

- (Fy)(t)e-M L ( 8 )I + I (IyXt)e-M L ( a ) - dy)(s )e- M L ( 8 > l ^ 

A | , - » < - ) _ e-ML(e)| n _ . ( t , f0 y(a)da,y(h(t)) -

- f ( t , /o
Hfty(.)da,0)l • « t , r ^ 7 ( i ) « i , 0 ) | J • 

• l f ( t , rm\(v)dx ,y(h(t))) - f (a , fmyMiv , y ( h ( a ) ) ) U 
»o o 

_• *T (e-M I '< t ) ,6)(k.r .M r '< T > + e u p [ L 0 ( t ) : t * T > 

• r T O p [ e L l < t ) . M L ( H ( t ) ) H ( t ) : t ^ T H • ? * ( f , e ) , 

where we have denoted 

^ p ( f , 6 ) »aup[i f ( t ,x . , ,y T ) - f ( 8 ,x 2 , y 2 ) | t t , e c<0 ,T> , 

I t - a l ^ e , | x f - x 2 U r 9 T ( H ( t ) , 6 ) e M L t H ( T ) J , )y, - y 2 U 

i 2 r e M L { T > 3 . 

Thus, by means of the above estimation we deduce that 

and consequently 

(5) o0(FT) = 0. 

Finally, combining (4) and (5) we obtain 

^u(Fy)^k <a(Y) 

so that F is (JL -contraction. 
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Applying now Theorem 1 we complete the proof. 

Remark. From the Theorem 1 it follows that all soluti­

ons of the equation (3) have the property mentioned in the 

thesis of Theorem 2. 
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