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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

22,2 (1981)

ON CONGRUENCE LATTICES OF FINITE PARTIAL UNARY
ALGEBRAS
D. JAKUBIKOVA-STUDENOVSKA

Abstract; In this note there are investigated finite
partial unary algebras & having the property that the height
of Conl is 2, It is shown that there are 10 types of such
algebras (the classification being performed by means of pro-
perties of subalgebras) and that for each type ¥ the follow-
ing alternative is wvalid: either (a) card Con & & 5 for each
iLer, or (b) for each positive integer n>5 there exists
QA e © with card Con@ = n,

Key words: Congruence lattice, unary algebra, partial
unary aheﬁa.

Classification: O08A60

P.P, P4lfy [3) inspired by a problem proposed by P, Go-
ral¥ik [ 1) investigated finite unary algebras & having the
property that the height of Con & is 2. In this note thaere
are studied analogous questions concerning finite partial u-
nary algebras,

Let . = (A,F) be a partial unary algebra. For fe F put
By = {xeA:f(x) existe}. An equivalence © on A will be cal-
led a congruence, if the following is valid (cf. also [2), p.
177): |

(V£eF)(Y x,yeB,) (x8y=> £(x)B £(y)).

Let A,EA and suppose that for each xé¢ A,n Bf we have
f(x)eA'; then B= (A,,F) is said to be a subalgebra of a.
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Consider the types «;, ied1,...,10% of finite parti-
al unary algebras (. such that the lattice Sub L consists
of A , ¥ end, maybe, of some simple or one-element subal-

gebras, where Subl is one of the lattices listed below:

type 1:,‘ 'Ca 1'3 1:&

o % °©
simple !
subalg.
one-el, ’ d
subalg.

g J» C
type Uy %

a ¢
simple .
subalg.
one-el.
subalg.

]

Proposition 1, Let (I be a finite partial unary algeb-
ra such that the height of Con( is 2. Then there exists
iedl,...,10} with Qe ;.

The proof is the same as in the proof of Proposition in

£31, p. 90, and p. 93 (case 5).

Proposition 2. (P4lfy [3]) Let G be a finite unary
algebra and suppose that the height of Con (. is 2. Then ei-

ther the number of nontrivial congruences is less than 4, or

A has no proper subalgebra.
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The results of this note are as follows:

Proposition 3. Let A ve a finite partial unary algeb-
ra such that the height of Con { is 2. Let Qe 74, i€
e {9,10%. Then the number of ncntrivial congruences is less

than 4.

Proposition 4. Let ie 41,...,8% and let n>3 be a po-
sitive integer. There exists a finite partial unary algebra
Qe ¥; such that the height of Con 4 is 2 and that the
number of nontrivial congruences of O is n.

The proof of Proposition 3 is analogous to that of Pro-
position in [3] (the cases 6 and 11), and therefore it will
be omitted.

Before proving Proposition 4 let us introduce sone' deno-
tations. lLet = (A,F) be a partial unary algebra. Put N(Q )=
= card (Con @ - fL, @} ). For x,yc A we shall denote 8(x,y)
the smalle st congruence 8 on 4 such that x0 y.Tf X, y are
distinct elements of A having the property that for each z,uc
€ A with 20 (x,y)u we have either z = u or {z,u¥ = ix,yf, then
we shall write 6 (x,y) =C{ix,y$] .

If $3 is a subalgebra of A and & ¢ Con B, then we de-
fine 8% in the following way: for x,y€ A we put x ¥y if and
only if either x = y or xBy. It is obvious that 6¥¢ Con Q.

Let k be a positive integer and 2, = {0,1,...,k-1}. Fur-
ther let G = {fw :oc € "} be the set of all unary operations
fx, on Z such that (2,,f ) is a cycle. Put €, = (2,,G.).

It is obvious that Con ¢, ={L, w}.
Proof of Proposition 4. Assume that n>3 is a positive

integer. lLet 1 = 1, Let us define a partial unary algebra
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A= (A,F) such that ¢ ., is a subalgebra of (4,0, ,), A =
Z, (vtel, a¢Z ,. Put F=G _,uif,hi, £(a) =0, h(0) =

= a, where B, = {a}, B =10}, a¢B8 for each ge G _;. Then

(' has no proper subalgebra. If ke Z then 6 (a,k) =

n-1?
=[{a,k{] according to the relations a¢ Bguiih for each

g€ Gn—t' k¢ Bf. Suppose that 6 is a nontrivial congruence,
© ¢{0, = B(a,k):keZ _,}. Then there are m,je2 _,, m+J,
with m6 j, and from the definition of Cfn—l we obtain that

& =L"; . Hence Conl =1, ,w,b*znqiu'[ek:kezn-g;'

n-1
The height of Con @ is 2 and N(Q ) = n.

Let i = 2, Let us define a partial unary algebra 0 =

[]

(A,F) in such a way that € _, is a sublagebra of (4,6 _,),
A=2 _,uial, a¢Z ,. Put F =0 _,uifl, £(a) = O, where
B, = {al, a¢ Bg for each ge G, _,. Then (Zn_’,F) is the only

proper subalgebra of  and it is simple. If ke 2 then

n-1?
8 (a,k) =[4ia,k3] (since k¢ By and a¢88 for each g€G _;).
If O is a nontrivial congruence such that 8 & { 9k =

= f (a,k):kezn_1§, then there are m,jeZ,_;, m#*j, with m6j.
From the definition of ¥, , it follows that m&k for each

keZ_ _,, and hence O = "*Z .

n-1 ne1
U{Gk:kezn_1}. The height of Con A is 2 and N(Q) = n.

« Thus Con O, = 1L ,w,b*‘zn I}u

Let i = 3. Let us define A = (A,F) such that €, is a
subalgebra of (A,G ), A = Z vio}, o¢Z,. Put F = G uif},
where £(1) = 0, £(0) = o, B, = {1,03, 0¢B, for each g€ Gy,
Then ({0},F) is the only proper subalgebra of A . Further
6(o,k) =L{io,k}] for each k€Z . If O 'is a nontrivial con-
gruence, O ¢ {6 (o,k):keZn§, then there are m,j€ Z,, m+J,
such that m8 j. From the properties of Ct’n we get that mBk
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for each ke Z , hence 061, which implies f£(0)8f£(1), i.e.,
060, and therefore 8= L ., Hence N((L) = n. The height of
ComQ is 2,

let i = 4. Let us define a partial unary algebra d =

]

(A,F) such that ‘fn_‘ s a subalgebra of (4,6, ), A =

Z,_yv {o0,a}, o+a,0,8¢2 _,. Put F =G _,uifi, f(a) = £(0)=

n-1

o, £(1) = 0, glo) = o for each g&G,_,, Bp =18,0,15, B8'=

Z,.quio3 for each geG _,. Then ({0},F) and ¥= (2 _, v

v {0} ,F) are the only proper subalgebras of & . Let 6 & Con¥.

N

If there are m,j€Z _,, m+j, with m68j, then from the defi-

nition of ¢ _, we get mBXk for each k€2, ,. Then 081,

£(0)6 £(1), i.e., 060, and hence 6= L, qotod * If there
n-

is me 2, with m8o, then g(m) 6g(o), i.e., g(m) O o for each

g€G,_,, and therefore 0 = L Z_,

keZ ., k41, then 6(k,a) =[4k,a}] . Further, 6 (1,a) =¢,
since £(1) 8 (1,a) f(a), i.e., O 6 (1,2)0, and ¥ is simple,

u{cﬁ)' Thus ¢ is simple. If

Let 8 be a nontrivial congruence, 6 ¢ 16 (k,a):ke2 _,$,

6 * 6 (o,a) = L{0,23) . Then either there are m,j¢ 2,1

m+J, with m©j, or mBo for some me Z,_,
= (¥ . £

le, 6 = z_udol Hence Con L = {¢ ,0, ¢ f0,83?

. Since & is simp-

s oSV 18, a) ke

n-1s K¥1%, N(d) =n and the
n

height of Con Q. is 2.
let i = 5. Let us define a partial unary algebra ( =
(A,F) such that €,y is a subalgebra of (A,G, .,),
= Z,_4v i0,,05%, 0y oz,o”ozézn_1. Put F = G o4 f,hl, whe-
re £(0) = 0,5, £(1) = 0, h(0) = LI h(°2) =0, = g(.oz) for
each g€ G _,, By = {0,1}, B =10,0} and B

A=

g = Zn-lu {02}
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for each g< G, ;. Then ({o,} F)y (Hey},F) and ({01,02},1)
are the only proper subalgebras of I . We have O (k,o') =
=[{x,03] for each xeZ _,. Let O be a nontrivial congru-
ence, 04 {6 (x,0,):kc2, }, 0% 6(0),0,) =[16;,03] .
Suppose that there are m,j€ 2, _,, m#Jj, such that m6 j. Then
mOk for each ke 2 _, (from the definition of ¥ _;), hence
061 anda £(0)6 £(1), i.e., 0,0 0, and therefore h(o,) 6 h(0),
i.e., 0,0 0,, which implies € = L . Now suppose that there
is me 2z, _, with no 05. Then g(m)6 g(o,), i.e., g(m) 8o, for

each g< G, _,, hence mO k for each k<2 and this is the

n-1?
above case, therefore 6 =L ., Thus ConA ={iL ,@ ,d‘{.".z}}u
vi@(k,0y):keZ, 43, N(Ad) = n and the height of Con O is
2,

let i = 6, Let us define a partial unary algebra 2 =
= (A,F) such that € _, is a subalgebra of (A,G _,), A = & oV
via,ol, a%o, a,0¢Z _,. Put F = G _,Uif,h}, £(0) = o, £(1)=
= 0, h(a) = 0, glo) = o for each g<¢ G 5, B, =10,1}, B, =
= {al, By = 2,V i0} for each ge G, _,. Then ({01,F),
({0,a%,F) and ¥= (Zn_au{o},?) are the only proper subalgeb-
ras of A , ({o,a},F) is simple. Let O € Con ¥ . If there are
m,jeZ, o, m+J, with m8j, then from the definition of € _,
it follows that m@k for each ke Z, ,. Hence 081, £(0)0£(1),

i'.e., 061, therefore 6 = L Zn-zu{d. If mOo for some me Zn_z,

then g(m) 0 g(o), i.e., g(m)B o for each g€G, _,, hence k6o

for each k&2, ,, i.e. 6= L z,_ viet+ Thus ¥ is simple. Ob-
viously 6(k,a) =Lik,all for each k€Z _,. Let & be a non-
trivial congruence, 0 ¢ 1 8(k,a):xe Zn_z}. Then either there

ere m,j€Z ., B+j, with m0j, or there is me 2, 5 with mbo.""
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Since ¥ is simple, we obiain that 0 = b*z o} + Hence

n-2vt
CmnQ=1{L,w, "*{o,a}’ b'zn-zu,(.ﬂ viB(k,a):keZ _,3,
N(Q.) = n and the height of Con . is 2.

Let i = 7. Let us define a partial unary algebra 4 =
= (A,F) such that ¥,_, is a subalgebra of (4,0 ,), A =
=2, o,V 10y,050, o,%+0,, 0,,0,67 .. Put F = G, _,virt,
£(1) =0, £(0) = o,, glo,) = o, for each ge G,_,, B, ={0,1},
B, = Zp.gY 10y} for each ge G _,. Then ({0} ,F), ({o,},F),
({04,05%,F) and & = (2, v te} ,F) are the only proper subal-
gebras of L . Let © « Con & . If there are m,je Z,2) B¥J,
such that m6j, then mOk for each keZ,_,. Hence 061, £(0)0

e£(1), i.e., 0,60, and therefore © = L%—ZU{OI} . If

mbo, for some meZ 5, then g(m}6 glo,), i.e., g(m)0 o, for
each geG, _,, hence k0o, for each keZ , and 6= L, . .
n-2"""1

Therefore ¥ is simple. Obviously 0 (k,0,) =[1ik,03] for
each keZ ,. Let © be a nontrivial congruence, 9 ¢ {8 (k,02
tkeZ, %, €% 6(o0,,0,) = [{o',ozil . Then either there are
m,je 2, _,, m*j, with m0j, or there is me Z,_ o with m0o,.
From the fact that & is simple we get that 0 = L*zn-z"“!} .

= x * .
Hence Con O = {. ,», U f05,05 * v Zn__zu{o,ﬂ“{e(kﬁz)'ke
€ 2, 5%, N(Q) = n and the height of ConQ is 2.

let i = 8, let & = (A,F) be a partial unary algebra such
that € _, is a subalgebra of (4,8 ,), A =2 Y {0}, o &
$2,4» F=06,_,, B, =2 , for each geC,_,. Then Cpoy am
({0},F) are the only proper subalgebras of & , ¥, , is sim-
ple. Obviously BO(k,0) =[1ik,03] foar each ke Z,_;. If O is
a nontrivial congruence of A , 8 € {0 (k,0):ke€ Zn<13, then
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according to the fact that € _, is simple we obtain 6 =

= L"Zn N Hence Con Q = {L , w, L“zn '}u{B (k.o):kezn_ﬁ.

N((L) = n and the height of Con d is 2.
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