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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,1 (1981) 

SOME FIXED POINT THEOREMS IN LOCALLY CONVEX SPACES 
AND APPLICATIONS TO DIFFERENTIAL AND INTEGRAL 

EQUATIONS 
Bogdan RZEPECKI 

Abatract: Kraano3elskii 183 has given the following the­
orem: Let E be a Banach space, K a non-empty bounded closed 
convex subset of E, and A, B- operators on K into E such that 
Ax + ByeK for all x, y in K. If A is a contraction and B is 
completely continuous, then the equation Ax + Bx = x has a so­
lution in K. We present some modification and generalizations 
of this result for locally convex space, and give their appli­
cations to the theory of differential and integral equations. 
Our modification in question is connected with the well-known 
method of norm changing in the theory of differential equa­
tions. 

Key words: Fixed point theorems in locally convex spaces, 
applications to differential-like equations, Bielecki method 
of norm changing, £6*-spaces. 

Classification: 4685, 3404, 3495, 4530 

Introduction. Let E be a Banach space, K a non-empty 

bounded closed convex subset of E, and A, B operators on K in­

to E such that Ax «*• Bys.K for all x, y in K. Krasnoselskii t8] 

proved that if A is a contraction and B is completely continu­

ous, then the equation Ax + Bx = x has a solution in K. 

In this paper we establish some modifications and gene­

ralizations of this result for locally convex spaces, and gi­

ve their applications to the theory of differential-like equ­

ations. The modification in question is connected with Bie­

lecki 's method ([13,[16, p. 343) of norm changing in the the-
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ory of differential equations. Our fixed point theorems ex­

tend those from 183,[113 ,[123,[43 and L17J. For other gene­

ralizations of [83 see [143 ,1151 ,[18] and [193. 

In the sequel we shall use the notations of <#*-space, 

the ot^-product of ^-spaces and a continuous mapping of one 

A%-space into another (see e.g. II10]). Finally, note that 

the following extension of Tychonoff's fixed point theorem 

is due to Singbal [2] (see also [63) and is used in the proof 

of Theorem 2 and Theorem 3: 

Let E be a Hausdorff locally convex topological vector 

space, let K be a closed and convex subset of E and let f be 

a continuous mapping of K into itself such that f[K3 is con­

tained in a compact set. Then f has a fixed point in K. 

Part I: Results. Throughout this part, E will denote a 

Hausdorff locally convex topological vector space with a sa­

turated family P of seminorms which generates the topology of 

E (1133,[33). 

First, assume that X is a sequentially complete set in 

E. Let F be an index set. Suppose that (f̂ . x tf e V ) is a net 

of mappings of X into itself such that there exists liar f,x 
y e P o 

for every x e X and p ( fT x - fry)& k - p ( x - y) for a l l p e P , 
<f & T and x, y in X, where k i s a constant (depending of a 

seminorm p) with 0 ^ k „ < l . Moreover, l e t us put f . x = lim„ f . x p o - y e r T 

for x in X. 

Since X is a sequentially complete space, so by Cain and 

Nashed theorem [4, Th. 2.23 (cf. [123) we obtain that 

f ~, ( T e P ) and f0 has a unique fixed point x^ and x , res­

pectively. Further, if yQ • xQ, yn =- f ^ ^ and y M » 
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= f „y W 
x^n-l for n > l a n d f e T , then 

P(xr - y™> ^ (1 - kp)"1 kn • p(y(*> - x0) 

for peP, W & V and nZl. It can easily be seen that 

limn x_ = x_. 
X6 P V 0 

Indeed, let p-, ,p2,. ..fP^ P, k = max k and & >• 0# 

Let 4^ and I/"* be the sets of all x in X such that p^x) -< €> 

and p^(x) «<- e(l - k) for l^i^l, respectively. Since 
lint-. fyxft = f 3- - there is an index y . e T with f^ x^ -/ - ^ t S r P d O o o " °o <ro 

- f 0
x
0
e ^ ' for all r «̂  T0» Therefore, for l^i^l and 

T ^ T 0 we haveji 

Pi ( xr " xo}~ Pi ( xr " f r V + Pi ( fr xo - xo) -

£ (i - fcp.^V p i ( f x x o - W * Pi ( fr xo - Vo> " 

9 (1 - kPi
rl-Pi(fy xo - foxo>^(1 - V " 1 # 6 ( 1 " k ^ 6 ' 

This implies x^ - xQ e V for all *y ̂  y 0 and completes the 

proof. 

Now, we give the following theorem (cf. C17]) of the ty­

pe of Banach contraction principle: 

Theorem 1. Let A be an arbitrary set, let T be a trans­

formation from A into E such that TCA1 is a .-»*-""**»ntially com­

plete set, and let (ĝ , t / e P ) be a net of transformations defi­

ned on A with the values in E and g^CA3cTCA3 for all T £ J1 • 

Assume that there exists lim g^x for each xeA and 

p(g^.x - gTy)-=kp.p(Tx - Ty) for all peP and x, y in A, whe­

re k is a constant (depending of a seminorm p) such that 

O^k <1. Further, let gQx = lim g^x for all xeA and let 

(0/ denote the ijidex such that (M = 0 or ^ e P * 
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Then, for every y in T[A] the set S^t^^yl (T-iy deno~ 

tes the inverse image of y under T) contains onfy one element 

and the mapping f^ defined by f^y = g^CT^yJ has a unique 

fixed point y^, in TfA3 (given as a limit of a sequence of 

successive approximations) with the following properties: 

(i) g^x = Tx for every x in T y^ tj 

(ii) if g^x*1* = Tx ( l ) for i = 1,2, then Tx ( 1 ) = Tx(2); 
c 

( i i i ) l im0 Tx_ = TxA for every x ^ in T .yA1 . 
<y e i -T o t "*-» (r 

Proof. Fix y in THAI. Suppose that v^ = g^^A for i = 

= 1,2, where Tx^ = y. We have p(v-̂  - v->)^k ^(Tx-j^ - Tx2) - 0 

for every p in P. Since P is a saturated family of seminomas 

on E, for v-^ v2 there exists p' in P with p'tv-̂  - Vp)^0. Con­

sequently, v-̂  = v2 and g^fE^yl contains only one element. 

Now, applying the above remarks to the mappings f^ of 

TfA] into itself, we can conclude the proof of the first part 

of our theorem. Let f^ y^ = y^ and let ̂ limp y r = yQ. If x^ 

is such that Tx^ =- y^ , then Tx^ = g^ x^ and ^im p Tx T = 

= lim yy = yQ = Tx . Finally, if g^x = Tx for some x e A then 

f(U>(Tx) = Tx. It means the points Tx
(1), Tx ( 2 ) from (ii) are 

fixed points of the transformation f^ and the unicity of fix­

ed points implies (ii). This completes the proof. 

Theorem 2. Suppose we are given: X - a subset of E; K -

a convex closed subset of B; T - a mapping from X to E such 

that TLX1 is sequentially complete and TtXlcKj Q - a conti­

nuous mapping from K into a compact subset of E. Assume, more­

over, that F is a mapping from XxK into E satisfying the fol­

lowing conditions: 

(i) F[XxK3c TCXlj 

(ii) for each p in P, there is a constant k , 0^-k «-.l, 
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such that p(F(x l fy) - F (x 2 , y ) )^k P ( T x i *" ^ 2 * f o r a 1 1 xl» 

x2 in X and ye K; 

( i i i ) for each p in P, there is a constant CJ:>0 such 
» p 

that p(F(x,y1) - F(xt?2))£ C^pi^ - Qy2) for all x £ X and 

ylf y2 in K. 

Then there exists a point x in X such that F(xfTx) « Tx. 

Proof. Let us fix y in K. Theorem 1 implies there ex­

ists a point u in X such that F(u fy) = Tu • Now, we define 

an operator f as y »—> Tu . Then f maps K into itself. 

First, we prove that fis continuous: Let (x^ : oc €, A ) 

be a convergent net in K and lim x^ » xQ. Further, let us put 

g^x = F(xfxo(, ) and gQx « F(x,xQ) for x in X. Then, g^ 1X3 c 

c TCX] and pig^*! " «o6 x2^ kp*P(Txl " -^2* for p € P *Bd *!' 

x2 in X. Now, let €, "> 0 and let us fix plfp2,...jp^ in P. 

Since V = {xeE:p.(x)< e for l .£i-£]c3 is a neighbourhood of 
the origin in Ef there is an ot e A such that P̂ fQ-̂ t "* ^9i<S 

(1£ i^k) for all 06 & o6Q* From this and (iii) it follows that 

U m A go0x =oCHmdF(x,xoC) « F(x,xQ) =- gQx for every x in X. The­

refore, by Theorem 1, linLfx^ =- limATii » Tu.., * fxA and the 

' J ' *c &A <* oc eA ^ o ^o ° 

mapping f is continuous on K. 

We prove that f[KJ is conditionally compact in E: Let 

(x^ : 00 e A ) be a net in K. We have 

p(P(ux^,x00) - F(u^ ,X/i ))^kp.p(Tu^- T u ^ ) + 

+ V p ( Q x * " Q"/-)» 
hence 

p(P(u^ ,Xo6) - FCu, ,x^ ))-Ml - k p ) - 1 . C p - p ( Q x e & . Qx^ ) 
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for all peP and oo , /3 in A . Further, let e > 0, let us 

fix Pi»P2>*»*»Pic in pt and let u 8 Put 

V =-fxeE:pi(x)<C*
1. e(l - L) for l^i^kj 

with C « m a X c and L * max „ k^ . Since (Qx• i o c e A ) 
A + Ji+Jk Pi 4 **,£&, P i °° . 

has a convergent subnet (Qxj i cf e A-*), so there e x i s t s cf € 

e A 1 such that Qx^ - Qx^ e V for a i l 06 , (I in A x with 

oc , /3 £* of • From the above 

P i ^ X , 'X<^} - F ( % '*/* }>~ (1 - V ' ^ V Pi(QX^" 
- Qx. ) -£ (1 - W"1- C-pi(QxoG - Q x ^ l ^ e 

for l^i^k and oc, A in .A, with cC, /3 ^ </Q. Consequent­

ly, (F(u ,x .-): c/ e A,) is a Cauchy net and therefore 

(F(u tx^)* cT « A O is a convergent subnet of the net 

(F(ux 9x^ ): oc e A ) . 
cC 

Finally, by Singbal result (given in Introduction), there 

exists x in K such that fx » x. Hence Tux * FCu^x) =- F(ux,fx)--

= F(ux,Tux) and we are done. 

Theorem 3. Suppose that we are given: X - a subset of Ej 

K - a convex closed subset of E.j T - a mapping from X to E such 

that T[X] is sequentially complete and TLX^cKj Q - a continu­

ous mapping from K into a compact subset of E. Assume, moreover, 

that F is a mapping from Xx QLK1 into E satisfying the follow­

ing conditions: 

(i) F(x,y)e TLX1 for every (x,y) e XxQIKlf 

(ii) for each p in P, there is a constant k , 0.^k ^ 1 , 

such that p(F(xlfy) - F(x2,y)) £ k • p^x.^ - Txg) for all xlf x^ 

in X and y in QLKl; 
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(iii) for every x in X the mapping y i—> F(x,y) is con­

tinuous on QIKJ. 

Then there exists a point x in X such that F(x,Q(Tx)) = 

= Tx. 

Proof. Essentially the same proof as that of Theorem 2 

yields that there exists a mapping y \—y Tu from QtKl to K 

which is continuous and F(u ty) = Tu for every y in QLK] • 
« y 

Now, the operator f defined on K by fx = TUQ is continuous, 

maps K into K and ffK] is a conditionally compact set. There­

fore, by the Singbal fixed point theorem, f has a fixed point 

z in K, and TuQz = F( U Q Z , Q Z ) = F(«Qz,Q(fz)) = F(uQz,Q(TuQz)). 

This completes the proof. 

Part II: Applications. Throughout this part J = CO,oo), 

I = to,a] and I n = IO,h] with 0 < h ^ a . Moreover, we shall deno-
k te by |f\ the k-dimensional Euclidean space, and by C (il,E) 

the Banach space of all bounded continuous functions from a sub­

set H of J to a Banach space E. In particular, let us put IR = 

= IR1 and C(il) = C0(IL,ZR ). 

1. Suppose that (E, il •! ) is a Banacn space and s£(E) is a 

Banach algebra of all linear continuous operators from E into 

itself with the standard norm I • I • Moreover, let us denote: 

by C(J,E) - the set of all continuous functions defined on 

J with the values in E; 

by 9G - the set of all mappings A from J into &(E) such 

that t h-> A(t) is a continuous operator-valued function (i.e., 

t \—•> A(t)x is a strong-ly continuous E-valued function for each 

x in E ) . 
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The set C(J,E) be considered as a vector space endowed 

with the topology of uniform convergence on compact subsets of 

J. This topology is determined by the sequence (p ) of seminomas 

given by Pn(y)
 s

 Q sup^ ||y(t))l for y€C(J,E), and therefore 

(see E20J) C(J,E) is a Frechet space. 

In the sequel, we shall deal with the set 5? as an &* -

space endowed with the following convergence: (A^) is a conver­

gent sequence, if sup̂ , SUD I A ^ t ) ! ^ oo on compact subsets 

SI of J and (A_(t)y(t)) converges uniformity on compact subsets 

of J for each yeC(J,E). Moreover, E x 9£ will be considered 

as an s£* -product [10, p.863 of the spaces E, 9£ . 

For example, 9£ endowed with almost uniform convergence 

(i.e., uniform convergence on every compact subset of J) is an 

£6* -space satisfying the above conditions. Indeed, let -0- be 

a compact set of J and lim ,sup^ I A At) - A A t ) 1 = 0 . Then r rrv-^oo t e si « o 
lim .sup, II A^(t)x - A(t)x )) = 0 for each xeE, and therefore 

ov->-a> i e Si n o » 

(A ( t ) ) i s uniformly bounded for n > l and t 6 JL . Further, by 

Lemma 3 .4 in [ 9 , p . 223, ^ l i m sup l lA n ( t )y ( t ) - A 0 ( t )y ( t ) l l • 0 

for every y ^ C ( J , E ) , and we are done. 

Proposition 1. For an arbitrary x e E and A e $£ there ex­

i s t s a unique function y , .% in C(J,E) such that y , A ) ' 0 ^ S X 

and 

y ' ( x , A ) ( t ) = A ( t ) y ( x > A ) ( t ) f o r t > 0 . 

Moreover, the transformation (x,A) .—> y ( x A) f r o m ^*-product 

E x 9£ into C(J,E) i s continuous. 

The above type re su l t i s contained in [93 (without the 

proof of continuous dependence). Using Theorem 1 we obtain a ve ­

ry simple proof. 
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Let x € E and A & X .To prove the first part of our pro­

position, we define 

(Ty)(t) = exp(-r f I A(s) I ds).y(t), 

(]*y)(t) = exp(-r /* I A(s) I ds).(x + /^ A(s)y(s)ds) 

for ye C(J,E), where r;>l is constant. Further, let 41 be a com­

pact subset of J. Assume that lim A„ = A^ and lim II x^ - xJI -
ms*ao « ° m-^co » o 

= 0, where (x ,A ) e E x. {•£ for m = 0 , 1 , . . . . Now, l e t us put: 

(Ty)(t) = e x p ( - r t ) » y ( t ) ; 

(Fmy)(t) = exp ( - r t ) - (x m + / A & (s)y(s)ds) (m = 0 , 1 , . . . ) 

for y£Co(il,E), where r ;> sup sup I An(t) 1 . Then, by Theorem 

1, there exists a unique ym in C (& 9E) (m = 0,1,...) such that 

as n — > oo . This completes the proof of the theorem. 

2. In the vector space E ^ * C ( I ) X C ( 1 ) X ... define a 

sequence (p ) of seminorms pn(x) = sup I xn(t)t, where x = 

= (x-, ,x 2 >...). It is known that the space E ^ equipped with a 

topology generated by a saturated family P = -ipn:n2:l$ is a lo­

cally convex space, and as stated in C20J, is a Fr^chet space. 

Let n- (i = 1,2,...) be positive integers with sup n. = 

= + oo .We consider in E ^ the infinite system of integral e-

quations 

(++) xi(t) = jT* gi(s,xi(s))ds + 

+ /* fi(s,x1(s),x2(s),...,xn (s))ds 

(i = 1,2,...) 

n. 
where f^, g^ are defined on I ^ IR and I x IR , r e spec t ive ly . 

Proposition 2. Suppose that the functions f., g. 
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(i =- 1,2,...) are continuous and there exist integrable on I 

functions Aj., Bi and Li such that 

|f.(t,u1,u2,...,un)I^Ai(t), lg i(t,u)UB i(t), 

lgi(t,u) - g i(t,v)UL i(t) lu - vl 
ni 

for every tel, (ulfu2,... ,un ) £ IR and for u, v in 1R • Then 

the system (++) has at least one solution defined on the inter­

val I with continuous coordinates x.̂ . 

The assumptions of Proposition 2 do not allow to use it for 

linear or weakly linear cases (i.e. gi(t,xi) = oCi(t)xi, 

oCi(t)4=0). Therefore we write it without proof. 

3. In this section we assume that E. is a Hausdorff locally 

convex complete topological vector space and P is a saturated 

family of seminorms which generates the topology of E. Further, 

let PifP2>*#,»Pm *>rom p be -fixed a*-d Ie<t B be a set of all x in 

E such that p.(x)*4b for l^i£m. In the sequel we shall deal 

with the integral in the sense of £123 or C7J. 

Denote by C(In,E) the vector space of all continuous func­

tions from Ift to E with the topology of uniform convergence. 

Then, -fx .—> sup p(x(t)):peP5 is & saturated family of Semi­
te -% 

norms defining the topology of C(In,E) and this space is comp­
lete. 

Applying the Theorem 3 we shall prove the following result: 

Proposition j. Let f be a continuous function from I x B ^ I 

to E such that M == sup sup p. (f (t,x,y))«c oo and 

p(f(t,xlfy) - f(t,x2,y))^L(t)-pCx1 - x2) for all peP, t€l, 

y e E and x.,, x 2 in B, where L is an integrable function on I. 
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Suppose that g is a continuous function from IxIxB to E, 

gtlxIxB] is conditionally compact and the mapping 

t v—>g(t,s,x) is continuous on I uniformly with respect to 

(s,x)eIxB. Then there exists at least one solution of the e-

quatiom 

x(t) = / f(s,x(s)f /
/4>g(s,6',x(6 )H6 )ds 

defined on the interval In with h = min (a,M b). 

Proof. Let us put: 

X ={xeC(In,E):x(t)cB for t in lh\; 

K = {xeC(Ih,E):pi(x(t))^ b-exp(-r /* L(s)ds) for l^i-^m 

and t in In}; 

(Tx)(t) = exp(-r f L(s)ds)-x(t) for x e X; 

(Qx)(t) = f g(t,s,exp(r JP* L( € )d0 )-x(s))ds for xe K; 

F(x,y)(t) = exp(-r /* L(s)ds) • j£* f (s,x(s),y (s))ds 

for xe X and ye C(In,E), 

where r>l is a constant. It can be easily seen that TfXlcK, 

F[X?<C(In,E)3c T[X], K is a closed convex set and TtXl'is com­

plete. For every peP, x-,, x 2eX and yeC(L,E) we have 

p( fQ f ( s , x 1 ( s ) , y ( s ) ) d s - J^ f ( s , x 2 ( s ) , y ( s ) ) d s ) & 

4z sup £exp( - r f L(s)ds)-p(x. , ( t ) - x > ( t ) ) ] . f* L(s) • 
-fc £ J ^ Jo -- * '0 

exp(r / * L ( S )d €T )de ^ r " 1 . exp(r / L(s)ds) • 

• supT p U T x - J U ) - (TxJ( t ) ) 

and t h i s y i e l d s supT p (F(x- , ,y ) ( t ) - F ( x 9 , y ) ( t ) ) £. 

^ r " 1 . supT p ( ( T x , ) ( t ) - ( T x p H t ) ) . 

Let us fix x in X. Suppose that fy^ : oc e V J is a conver­

gent net in C(In,E) with lim y^ = yQ. Assume, moreover, that 
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q l f q 2 , . . . f q k are f ixed in P, e > 0 , Z ia a compact s e t and 

y [ I j jJcZ for a l l oc e V # The function £ | i xxElJ^Z i s u n i " 

formly continuous so there e x i s t 9*x , (*2 ,##* , (*l * n **' &' >" 0 

such that q i ( f ( t , x ( t ) , u ) - f ( t f x ( t ) ,v) ) <: h"1^ for every l ^ i ^ r 

^ k, t e l n and u , v e Z with qUu - v) -<: e ' ( j = 1 , 2 , . . . , 1 ) „ S in­

ce W » -txeCtt . ,E) . supT q^(x(t ) ) -< e/ for l&i^H i s a 

neighbourhood of the or ig in in Ct t n f E) , there i s an index oCQ 

in P such that Toe ~ 70 s W for a l l oc fc <x.>0. From the previ ­

ous fac t s we have 

q i ( F ( x > y o 6 ) ( t ) - F ( x , y 0 ) ( t ) ) ^ 

- J1 q i ( f ( s » x ( s ) » y o c < s ) ) - f ( » f X ( s ) f y 0 ( s ) ) ) d s < h"1 . e * t 

for every t < s l n > l - £ i ^ k and a; £ o6Q. So we proved that for e -

very neighbourhood IF of the origin in C(In>E) there e x i s t s 

o60 6 P such that F(x fyo0 ) - F(x fyQ) e V for a l l oc fc CCQ. 

Therefore, ^ l in^Fte -y^ ) = F ( x , y 0 ) . 

Arguments s imilar to the above imply that the mapping Q i s 

continuous. Now, we prove that the s e t QIK] i s compact. 

For p c P , x£K and t^, t 2 in I n , we have 

p ( (Qx)( t 2 ) - ( Q x ) ( t 1 » ^ 

i > 
£j p ( g ( t 2 , s f e x p ( r J L(6- )de ) - x ( s ) ) -

0 
/•* - g ( t 1 , s , e x p ( r J L(6 )d€f ) - x ( s ) ) ) d s + 

h'l »* 
+ Jx P ( « ( t 2 » 8 » e x P ( r ^ L(o* ) d e ' ) - x ( s ) ) ) d s . 

Let e •> 0, let q2'^2t#*#'^k be fixe(3 i n Pf a n d *** us put 

M' = supw sup. q.| (g(t,s,u)). Since the function 

t ,—>g(t,s,u) is continuous on a compact I uniformly with res­

pect to (s,u)€ IxB, so there exists </':>* 0 such that 
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fo r every 11.. - t 2 I ^ $' • -̂ *om t h i s i t fo l lows 

q i ( ( Q x ) ( t 2 ) - (Qx)( t 1 ) ) ,6 

z ftf * , ? U A / SUPT * < - i ^ ( t 2 » s » u ) - f C t l t s , u ) ) d s + 

+ f >- sup sup q̂  ( g ( t , s , u ) ) d s < : y - + M' I t 0 - t-, I 
J* ^ l & ^ ^ a A ^ e W x B x * 2 1 

T>, / > 

f o r l ^ r i ^ k , x e K and 11-^ - t 2 i < min (oT'f e / 2 M ' ) . Consequent­

l y , f o r a l l neighbourhoods V of the o r i g i n i n E the re e x i s t s a 

number <f .> 0 such t h a t (Qx)( t 1 ) - ( Q x ) ( t 2 ) e V f o r every 

I t , - \*A<d' and x e K . 

Fur the r , by the Mazur theorem [ 5 ] the s e t coir? ( g [ I x I x B ] ) 

i s compact. Using the i n t e g r a l mean-value theorem (cf. [12]) we 

obta in 
f g ( t , s , x ( s ) ) d s e t*conv ( g C I x I x B ] ) f o r x e K 

J0 

and the re fo re 4 ( Q x ) ( t ) : x e K ^ i s a cond i t iona l ly compact s e t f o r 

a l l t in 1^ . F i n a l l y , by Asco l i -Arzela theorem the s e t Q[K] i s 

cond i t iona l ly compact in C( I j -E) , and a l l the assumptions of 

Theorem 3 a re s a t i s f i e d . Whence, there e x i s t s a t l e a s t one x € X 

such t h a t F(x ,Q(Tx)Ht) = (Tx) ( t ) fo r each t e I h , and we a re 

done. 
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