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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

22,1 (1981)

SOME FIXED POINT THEOREMS IN LOCALLY CONVEX SPACES
AND APPLICATIONS TO DIFFERENTIAL AND INTEGRAL
EQUATIONS
Bogdan RZEPECKI :

Abstract: Krasnoselskii [8] has given the following the-
orem: Let E be a Banach space, K a non-empty bounded closed
convex subset of E, and A, B operators on K into E such that
Ax + ByeK for all x, y in K., If A is a contraction and B is
completely continuous, then the equation Ax + Bx = x has a so-
Iution in K. We present some modification and generalizations
of this result for locally convex space, and give their appli-
cations to the theory of differential and integral equations,
Our modification in question is connected with the well-known
method of norm changing in the theory of differential equa-
tions.

-Key words: Fixed point theorems in locally convex spaces,
applications to differential-like equations, Bielecki method
of norm changing, <£*-spaces.

Classification: 4685, 3404, 3495, 4530

Introduction. Let E be a Banach space, K a non-empty
bounded closed convex subset of E, and A, B operators on K in-
to E such that Ax + Bye K for all x, y in K. Krasnoselskii [8]
proved that if A is a contraction and B is completely continu-
ous, then the equation Ax + Bx = x has a solution in K.

In this paper we establish some modifications and gene-
ralizations of this result for locally convex spaces, and gi-
ve their applications to the theory of differential-like equ-
ations. The modification in question is connected with Bie-~

lecki’s method ([131,(16, p. 341) of norm changing in the the-
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ory of differential equations. Our fixed point theorems ex-
tend those from [81,[111,(12],(4] and [17]. For other gene-
ralizations of [8] see [14],[15],[18] and [191.

In the sequel we shall use the notations of £*-space,
the &"’-product of L¥-spaces and a continuous mapping of one
4£¥ -space into another (see e.g. [10]). Finally, note that
the following extension of Tychonoff’s fixed point thecrem
is due to Singbal [2] (see also [6]) and is used in the proof
of Theorem 2 and Theorem 3:

let E be a Hausdorff locally convex topological vector
space, let K be a closed and convex subset of E and let f be
a continuous mapping of K into itself such that f[K] is con-

tained in a compact set. Then f has a fixed point in K,

Part I: Results. Throughout this part, E will denote a
Hausdorff locally convex teopological vector space with a sa-
turated family P of seminorms which generates the topology of
E ([131,[31).

First, assume that X is a sequentially complete set in
E. Let T be an index set. Suppose that (fy : 7€ T ) is a net
of mappings of X into itself such that there exists %}iémp fa,x
for every xe¢ X and p(f,r x - fy)& l:p—p(x - y) for all peP,

o el and x, y in X, where k_ is a constant (depending of a

P

<1. Moreover, let us put f x = lim £ x
A€

R . .
seminorm p) with O<¢k A

P
for x in X.

Since X is a sequentially complete space, so by Cain and
Nashed theorem [4, Th. 2,2] (cf. [12]) we obtain that
f,x,(fr e ") and f, has a unique fixed point Xy and x,, res-

pectively. Further, if Yo = Xo» ¥y = royn-l and yr(lv) =
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= (7)
£¥n-1 for n>1 and y € I' , then
pixy - 32 - k)™ B piy{? - x)

for peP, e " and nZ1l. It can easily be seen that

Bop xr = %

Indeed, let pl,pa,...,ple P, k= 421?,:2_4 kpi and € > O,
Let V" and ¥ be the sets of all x in X such that p;(x) < €
and p;(x) < e(l - k) for 1£i£1, respectively. Since
Tliemp Ty x, = £,X,, there is an index ¥, €I' with f.a, x, -
- £x,€ V¥’ for all 7 & y,. Therefore, for 1£i<1 and

Y ¥ ¥, Wwe havep
pi(x,a.- x,)£ pi(xT- Ty %) + py(fypx, = X)) £

-1
£ - »
£ (1 kpi) kp

ep:(fo.x =-fx)+p.(f.x =-Ffx)=
g 17¥ 7o oo 17 To oo

-1 -1
(1 - kpi) 'pi(f,x, xo - f°x°)< (1 - kpi) . 9(1 - k)ﬁ €
This implies Xy = Xy € v for all ¥ 7 7y, and completea the
proof.

Now, we give the following theorem (cf, [171) of the ty=-

pe of Banach contraction principle:

Theorem 1. Let A be an arbitrary set, let T be a trans-
formation from A into E such that T[A]l is a senrantiglly com-
plete set, and let (37{ :el") be a net of transformations defi-
ned on A with the values in E and g,x,[AJ cT[A] for all ¥ e I'.
Assume that there exists Tli‘ml_, g,xx for each xe A and
p(g,rx - g,ry)ékp-p(’l‘x - Ty) for all peP and x, y in A, whe-
re kp is a constant (depending of a seminorm p) such that
gyX for all xe A and let

P r
@« denote the ipdex such that « =0 or e e M.

0£k <1, Further, let gx = lim
7 e
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Then, for every y in T[A] the set gc&[T-ly] (T_,y deno-
tes the inverse image of y under T) contains only one element
and the mapping f,, defined by fuy = GM[T-lyJ has a unique
fixed point Y in T[A] (given as a limit of a sequence of
successive approximations) with the following properties:

(1) gux = Tx.for every x in 'l’_l‘y‘u,f,

(ii) if gﬂx(l) = 7x1) for 4 = 1,2, then Tx'P) = 1x(?);

(iii) ’x}iemp Tx, = Tx, for every Xw in T_ly(w .

u

Proof. Fix y in T[A]l. Suppose that v; = BuwX; for i
= 1,2, where Tx; = y. We have p(vl - vz)é kp-p(Tx:L - sz) =0
for every p in P, Since P is a saturated family of seminorms
on E, for v;% v, there exists p’ in P with p'(vl - v,)>0. Con-
sequently, v, = v, and g“[T_lyJ contains only one element.

Now, applying the above remarks to the mappings f(w of

T[A]l into itself, we can conclude the proof of the first part
of our theorem. Let r(“ Yu = Yo and let ’rl:'Lem(1 Vg = Voo If x0
is such that Tx(w=ryc,, , then Tx(u_= BuXu and %iemr, Tx,a, =
= Tliemr, Yy =¥ = Tx,. Finally, if 8. x = Tx for some xeA then
fu (Tx) = Tx. It means the points Tx(l), Tx(z) from (ii) are
fixed points of the transformation f. and the unicity of fix-

ed points implies (ii). This completes the proof.

Theorem 2. Suppose we are given: X - a subset of E; K -

a convex closed subset of E; T - a mapping from X to E such
that TIX) is sequentially complete and TIX1cK; Q ~ a conti-
nuous mapping from K into a compact subset of E., Assume, more-
over, that F is a mapping from XxK into E satisfying the fol-
lowing conditions:

(i) PF[X=xKlc T[X];

(ii) for each p in P, there is a constant ky, Oékp< 1,
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such that p(F(x;,y) - F(x,,y)}#£ kp p(Tx, - Tx,) for all Xy
x5 'in X and ye K;

(iii) for each p in P, there is a constant Cp>0 such
that p(F(x,y;) - F(x,yz))é Cp-p(%rl - Qy,) for all xeX and
¥y1s ¥p in K. ’

Then there exists a point x in X such that F(x,Tx) = Tx.

Proof. Let us fix y in K. Theorem 1 implies there ex-
ists a point uy in X such that F(uy,y) = Tuy. Now, we define
an operator f as y |———>Tuy. Then f maps K into itself,

First, we prove that £ is continuous: Let (x  :oc e A)
be a convergent net in K and cclémAx,x, = x,. Further, let us put
g, x = F(x,x,) and g x = F(x,x;) for x in X. Then, g [X1c
c T[X] and p(gﬁoxl - gc,oxg)‘_ékp-p(Tx1 - sz) for pe P and x,
X, in X. Now, let < > O and let us fix p;,Ppyeee,Pyp in P.
Since V = {xe E:pi(x)< ¢ for 14£i4k% is a neighbourhood of
the origin in E, there is an o, ¢ A such that pi(Qxac - on)<6
(1£i£X) for all ot » oy. From this and (iii) it follows that
Eng B X =&1€imAF(x,xoc) = F(x,xo) = g x for every X in X. The-
refore, by Theorem 1, <=<}émAf’xcc = ecliémAlbxoo = Tuxo = fx, and the
mapping f is continuous on K,

We prove that f£[K] is conditionally compact in E: Let

(x,:oc €A ) be a net in K. We have
p(F(uxao ,xoo) - I"(l.’.x,3 ,xlz ))ékp.p(l‘\:&x- Tuxﬂ ) +
+ cp'p(on(, - Qx{_.] ),

hence

-1
p(F(ux‘>6 X ) = F(uxp xp)) 40 - kp) T Cpep(Qxe - Qxg; )
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for all peP and o, @ in A . Further, let &> 0, let us
fix P1sPoyesesPy in P, and let us put

v =~fer:pi(x)<C"1- €(1 - L) for 1£1i4k}

{ C = = . Si H ;
with 4émzx!__ﬂe’ Cp:’L and L 43}2‘, kp'i Since (Qx xe A
has a convergent subnet (Qx, :d e A,), so there exists d e
€ A, such that Qx - Qxg € V for all o, in A, with

o, B & oro. From the above

pi(F(uxw Xy ) - F(ux,3 X ))£(1 -k )'1~C pi(Qxcc-

Py Py

-Qxﬁ)é(l -L)--C-pi(Qxao- Q,xﬂ )< €©

for 14i4k and o«,f3 in A1 with «, 3 Jo. Consequent-
1y, (F(uxd, »Xyr ) Jd e Al) is a Cauchy net and therefore
(F(“xd« ,xd~): J e Al) is a convergent subnet of the net
(F(uxoc 1 X )i oo el),

Finally, by Singbal result (given in Introduction), there
exists x in K such that fx = x. Hence Tu, = Flu,,x) = Flu,,fx)=

= F(uy,Tu,) and we ere done.

Theorem 3. Suppose that we are given: X - a subset of E;
K - a convex closed subset of E; T - a mapping from X to E such
that TL[X] is sequentially complete and T[X]c K; Q - a continu-
ous mapping from K into a compact subset of E., Assume, moreover,
that F is a mapping from Xx QLK] into E satisfying the follow-
ing conditions:

(i) F(x,y)e TLX] for every (x,y)e XxQIK);

(ii) for each p in P, there is a constant Ky Oékp< 1,
such that p(F(x,,y) - F(xz,y))ékp-p('l‘x:L - Tx,) for all x,, X,
in X and y in Q[K];
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(iii) for every x in X the mapping y +—> F(x,y) is con-
tinuous on QIK].

Then there exists a point x in X such that F(x,Q(Tx)) =
= Tx,

Proof. Essentially the same proof as that of Theorem 2
yields that there exists a mapping y r—> 'l‘uy from Et—ii to K
which is continuous amnd F(uy,y) = Tuy for every y in QLK].
Now, the operator f defined on K by fx = 'I‘uQx is continuous,
maps K into K and f£[K] is a conditionally compact set. There-
fore, by the Singbal fixed point theorem, f has a fixed point
z in K, and Tug, = F(ug,,Qz) = Flug,,Q(fz)) = F(\le,Q('l\le)).
This completes the proof.

Part II: Applications. Throughout this part J =[0,mwm),
I=00,a) and I, =10,h) with O<h<a. Moreover, we shall deno-
te by ]Rk the k-dimensional Euclidean space, and by C ({0 ,E)
the Banach space of all bounded continuous functions from a sub-~
set Q of J to a Banach space E, In particular, let us put R =
= RY and C(Q) = C (Q,R).

1. Suppose that (E,ll ') is a Banacn space and £(E) is a
Banach algebra of all linear continuous operators from E into
itself with the standard norm I+l . Moreover, let us denote:

by C(J,E) - the set of all continuous functions defined on
J with the values in E;

by % - the set of all mappings A from J into ¥ (E) such
that ¢t —> A(t) is a continuous operator-valued function (i.e.,
t +> A(t)x is a strongly continuous E-valued function for each

x in E).
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The set C(J,E) be considered as a vector space endowed
with the topology of uniform convergence on compact subsets of
J. This topology is determined by the sequence (pn) of seminorms
given by p (y) = oés?pémlly(t)ll for ye C(J,E), and therefore
(see [20]) C(J,E) is a Fréchet space.

In the sequel, we shall deal with the set £ as an ¥£* -
space endowed with the following convergence: (An) is a conver-

gent sequence, if ms§p4 tssu.?Q ] An(t) Il < co on compact subsets

O of J and (A,(t)y(t)) converges uniformly on compact subsets
of J for each y e C(J,E)., Moreover, Ex ¥ will be considered
as an £* -product [10, p.86] of the spaces E, ¥ .
For example, X endowed with almost uniform convergence
(i.e., uniform convergence on every compact subset of J) is an
L * -space satisfying the above conditions. Indeed, let QL Dbe
a compact set of J and 1lim surhlAn(t) - A (t) ] = 0. Then

m>w te
m ,sup A, (t)x - A (t)x )| =0 for each xeE, and therefore

m:&;w te
(An(t)) is uniformly bounded for n>1 and t € . Further, by
Lemma 3.4 in [9, p. 221, %]_,;.go 4598 NA (t)y(t) - Ao(t)y(t)" =0
for every y ¢ C(J,E), and we are done.

Proposition 1. For an arbitrary x€E ard A ¢ £ there ex-
ists a unique function Y(x,a) in C(J,E) such that Y (x,A) (0) = x
and

y'(x’A)(t) = A(t)Y(x A)(t) for t=0.
’
Moreover, the transformation (x,A)+—> Y(x,4) from ¢£*-product
’

E < £ into C(J,E) is continuous.

The above type result is contained in [9] (without the

proaf of continuous dependence). Using Theorem 1 we obtain a ve-

ry simple proof.
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let x¢E and A ¢ %2 . To prove the first part of our pro-
position, we define

(Ty)(t) = exp(-r j{'}t 1 A(s) M as).y(t),

(Fy)(t)

t t

exp(-r fo 1 A(s) b @s)e(x + fo A(s)y(s)as)
for y e C(J,E), where r>1 is constant. Further, let X be a com-
pact subset of J. Assume that m&é‘bAﬂ = A, and lim It x, - xoll =
= 0, where (xm,Am)eExOE form = 0,1,... . Now, let us put:

(Ty)(t) = exp(-rt)ey(t);

(Fy)(t) = exp(-rt)-(x, + f: A (8)y(8)ds) (m = 0,1,...)
for ye C (Q,E), where r > sup sup 1 A, (t)] . Then, by Theorem
1, there exists a unique y_ in CO(S).,E) (m = 0,1,...) such that
y(xm,Am)ISl =y and  sup Il y(%’%)(t) - y(xo‘Ao)(t) h—> o0

a8 n —> 0© , This completes the proof of the theorem,

2. In the vector space E, = CO(I)x CO(I)x eeo define a
sequence (p, ) of seminorms p(x) =, sup, | x, (t)|, where x =
= (xl,xa,...). It is known that the space E,, equipped with a
topology generated by a saturated family P =-ipn:n?.1§ is a lo-
cally convex space, and as stated in [20], is a Fréchet space.
Let ny (1 =1,2,...) be positive integers with Lsg;h n; =
=+ © . We consider in E,, the infinite system of integral e~

quations

f
(++) x5 (¢) =‘4) gi(s,xi(a))da +

1

+f0 fi(s,xl(s),xz(s),...,xni(s))ds
(i=1,2,...)
By

where f;, g; are defined on I=<R * and Ix< R , respectively.

Proposition 2. Suppose that the functions f,, g
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(i =1,2,...) are continuous and there exist integrable on I

functions A;, B; amd I; such that
lfi(t,ul,uz,...,uni)léAi(t), lg; (t,u)| £B, (L),
lgg(tyw) - gg(t,v)I£L5(t) lu - vl
n,
for every tel, (ul,uz,...,uni)e R * and for u, v in R . Then

the system (++) has at least one solution defined on the inter-

val I with continuous coordinates X5

The assumptions of Proposition 2 do not allow to use it for
linear or weakly linear cases (i.e. gi(t,xi) = oty (t)xy,

oci(t)#:o). Therefore we write it without proof.

3. In this section we assume that E. is a Hausdorff locally
convex complete topological vector space and P is a saturated
family of seminorms which generates the topology of E. Further,
let P1sPoye«esPpy from P be fixed and let B be a set of all x in
E such that pi(x)éb for 1<i4m., In the sequel we shall deal
with the integral in the sense of [12] or [7].

Denote by C(Ih,E) the vector space of all continuous func-
tions from Ih to E with the topology of uniform convergence.

t
norms defining the topology of C(Ih,E) and this space is comp-

Then, {x +—> Blélp:[ p(x(t)):pe P} is a saturated family of semi-~
2’9

lete.
Applying the Theorem 3 we shall prove the following result:
Proposition 3. Let f be a continuous function from Ix B»<E
t = .
o E such that M 4289P, 8up p; (£(t,x,y))< co and
P(f(t,xl,y) - f(t,x5,y))4 L(t)-p(x; - x,) for all peP, tel,

yYe E and X, Xp in B, where L is an integrable function on I.
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Suppose that g is a continuous function from IxIx<B to E,
g[IxIxB] is conditionally compact and the mapping
t +—>g(t,s,x) is continuous on I uniformly with respect to
(s,x) e IxB. Then there exists at least one solution of the e-
quatiol; )

x(t) = fot f(s,x(a),_[)’”g(s,e,xcs))ae )as

defined on the interval I, with h = min (a,l('lb).

Proof. Let us put:

X = {xeC(I,,E):x(t)eB for t in I} };

K = {xeC(I,,E):p;(x(t))<£ b-exp(-r ‘[: L(s)ds) for 1<i4m
and t in L };

(Tx)(t) = exp(-r _{;t L(s)ds)-x(t) for xe X

(Qx) (t) fot g(t,s,exp(r j(;/b L(6)d6 )-x(s))ds for xeK;

F(x,y)(t) = exp(-r f: L(s)ds) . _f‘;t f(s,x(s),y(s))ds

n

for xe¢ X and ye C(I,,E),
where r>1 is a constant. It can be easily seen that T[X]cK,
F[X>C(I),E)lc T[X], K is a closed convex set and T[X] is com-
plete. For every peP, X;, Xxp€X and ye C(Ih,E) we have
t t
p(]{} f(s,x,(s),y(s))ds "fo §(s,x5(8),y(8))as) £
t t
éte;g])lhll'_exp(-r.f;J L(a)ds)-p(xl(t) - xz(t)t)] -_f; L(s) -
» -
exp(rfo L(6)d6)ds<r 1, exp(rog L(s)ds) -
e

I‘evp((tl‘xl)(t) - (Txa)(t))

and this yields tsészh
-1 -

£vr -{?:pl,%p((kl)(t) (sz)(t)).

P(F(xy,y) (t) - Flx,,y)(t)) £

Let us fix x in X. Suppose that {y_ :occ e T'¢ is a conver-

gent net in C(Ih,E) with a({limp Vg = Yo Assume, moreover, that

o]
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4),Qp5-++,q) are fixed in P, €> O, Z is a compact set and
¥, [I,3c2 for a11 o« €' . The function f,Ihxx[Ih]xZ is uni-

formly continuous so there exist ql',qz',...,q]: inP, "> 0

le  for every 1<i<

such that qg(£(t,x(t),u) - £(t,x(t),v))<h”

£k, tel, and u,veZ with q3(u -v)<e” (j=1,2,...,1). Sin-

ce W ={xeC(I,,E): sup qi(x(t)) < & for 1£j41% is a
tely J

neighbourhood of the origin in C(Ih,E), there is an index <o

in T" such that y - ¥y, € W for all o &= e¢y. From the previ-

ous facts we have

q; (F(x,y, ) (t) - F(x,y,)(t)) £
£ Jzt q; (£(s,x(8),y, (8)) - £(s,x(s),y,(s)))ds< et

for every tel,, 14£i£k and o & ©Gye So we proved that for e-
very neighbourhood 7 of the origin in C(Ih,E) there exists
oL, € " such that F(x,y, ) - F(x,y,) € " for all < & oy
Therefore, dliémPF(x,yoc) = F(x,y,).

Arguments similar to the above imply that the mapping Q is
continuous. Now, we prove that the set QIK] is compact.

For peP, x€K and t,, t, in Ih’ we have
p((Qx)(t,) - (@) (¢ ) =
2t »
..J; p(g(tz,e,e:p(rfo L(6 )d6 )-x(s)) -
- g(tl,s,exp(r_c) L(6 )36 )-x(s)))ds +
¢, »
+ _[é'2 P(g(ty,8,exp(r [ Ll )ae ) x(s)))ds.
1
Let ¢ > O, let q7,Qp,.-+,q, be fixed in P, and let us put
M qi(g(t,a,u)). Since the function

= 8 sup.
14320 1n1%B

t +—> g(t,s,u) is continuous on a compact I uniformly with res-

pect to (s,u)e IxB, so there exists Jd > O such that
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£
12524 (/ai/‘i?dxgqi(g(tl’s’u) - 8ltys,u<zg

for every |t1 -ty | < d’ . From this it follows

q; ((Qx) (ty) = (Qx)(t9)) £

t -
£ 1030 o BB Wt - Ty e ¢
t

+ 2 a su (g(t,s,u))ds<S- + M | t, - t. ]
-& PP SO 1 S e S C e

for 1£i<k, xeK and |t - tyl< min (7, ¢ /2U"). Consequent-
ly, for all neighbourhoods V of the origin in E there exiats a
number d° > O such that (Qx)(t,) - (Qx)(t,)e V for every
[ty - tol<d” and xek.

Further, by the Mazur theorem [5] the set conv (g[Ix I=B])
is compact. Using the integral mean-value theorem (cf. [12]) we
obtainm

ftg(t,s,x(s))dse t-conv (g[I=x<IxBl) for xek
(4

and therefore {(Qx)(t):xeK} is & conditionally compact set for
all t in Ih‘ Finally, by Ascoli-Arzela theorem the set Q[K) is
conditionally compact in C(Ih,E), and all the assumptions of
Theorem 3 are satisfied. Whence, there exists at least one x€ X
such that F(x,Q(Tx))(t) = (Tx)(t) for each te I,, and we are

done.
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