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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
21,4 (1960)

INTEGRAL REPRESENTATION OF n-VARIABLE POSITIVE REA
FUNCTIONS :
Jifi GREGOR

Abstract: Multivariable functions analytic in a half-
plane may have some interesting properties which cannot be
directly derived from the known results on functions analytic
ir polydiscs, but follow from their integral representation.
Such representation for functions with positive real part in
the right half-plane is given here.
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Classification: 32425
30D50, 32A30

In recent years, the class R‘™) of positive real func-
tions of several complex variables gained considerable atten-
tiom due to their significance in electrical network theory.
Their integral representation can be the starting point of de-
tailed mathematical description of these functions and, in due
course, a tool for solving difficult problems in approximation,
analysis and synthesis of multivariable electrical methods.

In what follows, we shall denote z = ('1"2""’11) the
points of comple x Euclidean n-space C*, 1= (1,1,...,1), and
further the following notation of sets will be used (with the
superscript n occasionally omitted):

r,(n) ={zecC® Re z;>0, i=1,2,...,n},
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v 2{zec?, Re 3y = 0, i=1,2,...m},

f.-(n) ={zeC®, Res, 20, i=1,2,...,m}u {0},
where {0} denotes the set compactifying C". vin) jq isomorp-
hic to a real n-dimensional Euclidean space and forms the Berg-
man-8ilov boundary of ‘-.(n). Considering intervals I in this
space and denoting ty = Im 3; we may set

- dtLdtz oo dt,
nes ® —
BT+ td) @+ the. 1+ tD)

which can be extended to a measure w on V. Evidently, mes(V) =
= 1, The set of functions f'V——)Cl for which f lflzd(u, < +00,
will be denoted by LZ(V), this set is a Hilbert space with the
scalar product {f,g) = f f 2du . The set of functions holo-
morphic on r«(n) will be A(T"), the set of functions continuour
on T®) axcept perhaps at infinity will be G(T"). Finally, G
={feA(M)nC(P); 2| 12N}

A function £: P{®) _, ¢ is called positive (fe #M)) ir

1) rea(r®)),
53
i) £(r®™)c pfl;

it is called positive real (f e ﬁ(n)), if, in addition,
iii) f£(2) = £(3) for all 3z e @),

Positive real functioms are analytic in an unbounded do-
main, their behaviour cannot be discussed directly in terms of
"HP or IP spaces by simply transforming the corresponding results
for functions on polydiscs. Nevertheless, these functions fol-
low a relatively simple pattern ax'ud, as for their boundary be-

P(n) and related problems

haviour, extensions from subsets of
similar results to those for functions on polydiscs can be pro-

ved. The basis of such investigation is their integral represen-
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tation, which will be summarized below.

lemma_,l. The set S of functions

= 00 < My,lyyeee,M<+ 0 , My intogerl}
is complete and orthonormal in Lz(v).

» The ortonormality iu' obvious e.g. form
1 - jt
1 d dat
kB : 2

— (———=X) —-!-z = d. . (§° = -1);

i '[w 1+ j‘k 1+ ‘k o'-' j 1]
the completeness follows from earlier and mere general results
(see e.g. [5], chap. XVII ),

s* and S, respectively, will further demote the subsets
of the countable set S such that -1;0 for all i=1,2,...,n and
miéo for all i=1,2,...,n, respectively. The set s* can be or-
dered so that S* = { ,(3), k=0,1,2,...}. Evidently, $'n 8~ =
= {g,(2)} = {13, s* is a complete orthonormal system in G.

Lemma 2. For all u & l"“n), zc7?) the series

o -
(2) w20 YW Py (2) = H(u,z)
converges absolutely and uniformly on any compact subset of
r~(n) - -‘_—,(n); _
w 1+ wse,
i) H(u,z) = 5 Wi (1 + —==);
27 s v + oy
ii) H(u,z) = H(z,u) for all (u,z) e P (P ang
H(z,z)>0 for all z ¢ F'(n);
1ii) H(u,1) = H(1,z) = 1;

[

iv) denoting H, the function assuming the value H(u,s)

at a point u e P(n), then for any z e '-.;-(n) there is l!’c A(T);
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v) for any 3 ¢ ™) there is H eA(M)nC(M).

P 5 e F®) there is

l-u 1-3|.,

l+u 1l+%

For u 6

oo
and therefore the series (2) is majorized by m24 nq™ for some
k 3
q<1, which is convergent. Further, i) holds true for n=l. The
statement follows by induction when considering that there ex-

ists an ordering ?én) such that

9 o0
2o M oM@ = (,F, o2 P w e {P )
0w 1= 1-2
(=, (——n _ Iy,
R . 4 w1+ 2,
where the superscripts n denote the dimension of the correspon-
ding complex space. The rest of Lemma 2 is obvious; it is quo-

ted here for convenience only.

Lemma 3. If f€ G then

f£(z) =<f,3’7 for all z ¢ l"(n)
and

£Q2) =<r,_1_>=fv £am

0
» We have £(z) = w20 “x Px(z) and therefore

1) [ —
(LH = (= 0y gplu), X, g (u) glz)) =
o0 S [+ )
=30 Yk <9 M), 9y (W) @, (2)) = F ety g (2).

(In the sequel, the notation like {f(u),g(u) h(z)) means
hzz)fv fgdu , i.e. u denotes the "integration variable",

while z is a "parameter” of integration.) -

Let P and P respectively, denote the projection in L2(V)
onto the subspace spanned by the set S' and S™. Cleerly,
PI2(MABI2(V) = {£:f=const.}. I feG, then Pf = £ and,
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moreover, Br =Ppr = £(1) =<£,1). We have H ¢ PLZ(V) for all
s ¢ ™), The projection in I2(V) onto the subsp. c spanned by
the set S'U S™ will further be denoted by Q.

Consider now a function fePLz(V) and an ordering of st =
= {9,(3), k=1,2,..., $,(z) =13, Then the set S” can be so or-
dered, that S” =iy, (z)} and y, (2) ¢, (z) = 1, k=0,1,... . Due
to completeness of S in PI?(V) and that of S in ?LZ(V) the
relation

CEX, yyy = <L, @) k=0,1,...

defines for any fe PLZ(V) a certain function f*¢ ?LZ(V):
[ —
(3) ¥ =k§°<1’, Py ¥ye

If, in addition, £€ G, then f and f* have complex conjugate re-
strictions to the set V, i.e.

(3a) )y = ¥y

and therefore £ + £#c QI?(V) and (£ + £%)|, = 2 Re £y, where
Re mears the real part.

Lemma 4. Suppose f¢ G, then
1) for all z ¢ ™) there is
{£*H)> = (FHD = £(0);
ii) for all z € r{™) there is
£(z) = - £(1) + (2 Re £,H,) .

The proof may be omitted.
As usual, if a set B of u-measurable functions is given and
fv f duw = 0 for all f&B, we shall say that the measure w« is
orthogonal to B. Now the first part of the main Theorem can be

proved.

Theorem 1. Suppose f¢ A( r““’) and Re f£( l"(n))> o, i.e.
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fe J"‘(n). Then there exists a positive measure & orthogonal
to the subspace S~ (S'U S”) such that for all z € r )
f(z)=-ﬁ)+2{/§‘d@, ’ /;/d(u,<+oo.

>  Let ry be real numbers, 0<ri< l, i=1,2,...,n, and Py =

l-r1r
=

i, 0 < s <1. Define a function f, by

1+r:L . .
+ z 2z
fr=f(21 £ 2'%2  InCn,

1+ Oz 14 ©az, 1+ Pz,

z +
Since fe A( r'(“’) and Re —i———P—L—->O for all Re z; >0, we have
1 + ©525 >
+ jt 1+t
e e L
L+dpgty 1+PsY

£ Al I"(n)). Moreover, Re

therefore f,e C( I"(n)).

Using the maximum principle, we may state that for zeV
@) |t (2)|= | 0Bt b )| £ pax | (22t

1+ jot 1+t

for some 1 > ¢'> @ . Here, "> @ means P’i> 4 for all i=
=1,2,...,n and the notation is similarly shortened in (4). This
inequality implies f.¢ L2(V) for all O< r<l. Summarizing we ob-
tain fré G for all O< r<l. According to ii) of Lemma 4, there
is

(5) f.(z) = - £(1) + 2<{Re £ ,H>

or otherwise

£,.(z)

-~(__ﬂ+2_fvﬁzdé"rl

dt,,dts,e..,dt
= 12~ 20 '’ 'n
where d @ ,, = Re £, > 5 T
(L + 1)1+ t5) oo (1 + t))

In (5), Re £,>0 is the restriction of £, + £} €QL%(V) to the
set V and therefore it is orthogonal to all functions ¢ e Lz(V)
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whi ch does not belong to @ (V). The total variation of #,
equal s
/ dha, * <R f ") « RFf,(p* Rfd).

Al the previous conclueions are valid for any vector r<Ilj the
set of positive neasures (A, is equally bounded and has the
orthogonality property as stated. The function H* is continu-
ous and boundsd on V by v) in Lemma 2. Wsing now a generaliza-
tion of Helly's theorem which is due to H X Bray (see (4 p.

192), the assertion of the theoremf ol | ows.

To prove the converse to the previous theorem we need so-

ne sinple |emma*.
Lemma 5» Suppose feG, then
<Re f,Hy H> = H(U,2) " W? + * («) 1or all 8>u 6 P<N)4
« Let ze P{™, then H(u,z) f(u) « {Hy)(N)e Q and therefore
(see Lemma 3)
(6") H(u,z) fCu) =<H,fiH,> =<f{H I">.
Snmlarly (see Lemma 2 and (3a)),
(6") H(u,z) flz) * H(z,u) f(z) » <f,Hg Hy> *<fiH,\ /.
Adding (6') and (6") we obtain the desired result.
Lenma 6. For all z,u ¢ n*" there is
QHu 5J) « H(zu)iH, +17-1),
where Qis the projection operator introduced above.

Let f be an arbitrary function belonging to G Then (using
Lemma 5 and ii) of Lemma 4)

<Re f,HH'> = |HU,2) C<f « % H>+ <T+ f* H> fil) - *0>3+
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Using Lemma 3 and i) of Lemma 4 we obtain
(Re £,H, H_ =% H(u,s) (£ + £¥H +H_-1)
or, otherwise

(1) £+ £5H, Y{: - H(u,s)H, + H_ -1)> = 0.

This is an orthogonality condition and, moreover, £ + £%QL?(V).
In order to satisfy (7), either H, 'fi" - H(u,z)(H, +‘f~f' -1) be-
longs to the orthogonal complement of QL2(V) or Q(Hu iz) =

= Q(H(u,z)(H, + H_ - 1)). The first condition cennot be met be-
cause H +H - 1€QI2(V); and therefore Q(H, H,) = H(u,z) Q(H ¢+
+ ﬁz = 1) which implies the statement.

Theorem 2. Suppose « is a positive measure finite on V
and orthogonal to the subspace spanned by the set S\(S+u S-);
then the function f,
£(z) = - 21 + 2 H, a@,
is analytic in r"“’ and has a positive real part there.

The function o(z) = ];,'!'I-’ du is holomorphic in r@)
since the integral converges uniformly and absolutely on any

compact subset of ,..(n). For 2 = 1 we obtain

J,a@ = Re £ (1)
and therefore

Re £(z) =jv(nz +H, - 1w .
From Lemma 6 it follows that

- 1l -
H +H «1z ——— Q(H_ H_)(u)
u z H(z,2) 'z
and therefore

Re £(z) L [ am, F)wa — [, | B )u)de;
= = u
y H(z,z) °V z gl W H(z,z) Vv % % ¢

since H(z,z)>0 for Re £>0 , the proof is completed.
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The two above theorems give necessary and sufficient con-
ditions for a function f to be positive. To meet condition iii)
in (1), additional assumptions must be made. We may summarize
the corresponding result as follows:

Theorem 3. The function f: l"(n)——->C is positive if and

.

only if it admits a representation

f(z)=-h_~;)+2£gd#

with a finite positive measure & on V(n)

which is orthogonal
to the subspace spanned by the set S\ (s*s S”). The function £
is positive real if and only if it is positive and the measure
( is orthogonal to the set 1 of functioms ¢ e LZ(V) whose

real part equals zero (u.-almoat everywhere.

P Only the second part remains to be proved. A positive

function £ is positive real if and only if f£(Z) = f(z) for all

zZ e r(“’. According to Theorems 1, 2

£(Z) = = £(1) + zfv ( Z gplu) ¢ (zNdu,

£(z) = - £ + 2 [ (Z g0 gylaNaw.

The right-hand sides of these two equations are equal if and

only if

SIS (o (u) = ¢ .(w) ¢ (z)du = Re £(1),
1% k k k “
which is equivalent to

fv( Z Im @pu) Re @ (2))dw (u) =0,
The last condition will be satisfied iff
fvxm Prlw) d@ (u) = 0 for all k=0,1,... .

The system {p,} is complete and therefore the measure has to

be orthogonal to all functions which have the imaginary part
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yin)

. of their reduction to equivalent to zero.

Specifying the above theorems torrFl, a form of integral
representation slightly different from the usual Herglotz theo-
rem (see e.g. [2]) is obtained. Analyzing the two proofs it can
be seen that this is mainly due to different handling of the be-
haviour of function f at infinity. Among others the above re-
sult enables us to generalize the Wolf’s theorem on positive
functions, interpolation theorems in the class of positive and
positive real functions, results on boundary behaviour of posi-
tive function and similar topics.

We hope to devote another paper to these problems.
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