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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

21,2 (1980)

ON BICOMPACTA IN = — PRODUCTS AND RELATED SPACES
N. N. YAKOVLEV

Abstract: In the present article we study the topo-
logical properties of bicompacta which are embedded in =\~
products of separable metric spaces., We prove that every Cor-
son bicompactum is hereditarily metalindeldf, while every bi-
compactum which is embedded in a & -product of compacta has
a closure-preserving covering of compact sets (CPC). We also
study the properties of hereditarily metalindeldf blcempac-
ta and of the bicompacta with CPC.

Key words: Ricompacta, Ea—products of spaces, metalin~
deldf spacea, closure-preserving covering.

Classification: 54D30

In this note we study the = -products of metric spaces
(the compacta in general). The bicompact subsets of these
= -products are interesting because every Eberlein bicom-
pactum (weakly bicompact subset of a Banach space) is homeo-
morphic to some bicompact subset of = -products of segments.
The aim of this note is to give some exclusively topological,
key properties of Corson (and Eberlein) bicompacta, so that
the spaces with these properties well enough topologically
approximate the properties of bicompact subsets of = -pro-
ducts of compacta.

We adopt the terminology of [ 1]. The werd "compactum"

will always denote a metrizable bicompact space, while
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"bicompactum” will denote a Hausderff bicompact space. We
shall denote by I the segment [0,1], by D = {0,1% in dis~
trete topology, by N - the natural numbers. In this paper
we use also the mext notation: ‘
S(I,T) =4yeTHiI e M: l{u e M 34031 < K5,

T (I,T) =iyeTHI toveMi:Ve>0lfxe Myl = e} lc Kl
e(I,M) ={yeTH{I :xeMi: 1 e Miy@+03]| < 5 3.

The topologies of /all of these spaces are generated by the
product TT{I :oc e MY . '

It is easy to check that 5, (I,l) is the space co(M) in the
topology of pointv’rioe convergence on I' .

It is well-known [ 3] that the space X’ is an Eberlein
bicompactum iff it is homeomorphic to some closed subset of
z* (I,"). Every bicompactum that is homeomorphic to some
closed subset of = (I,T") is called a Corson bicompactum [2].
Rosenthal [ 4] proved that a bicompactum is an Eberlein bi-
compactum iff it has & & -point-finjite sepgrating family of
open Fsv-subseta (where a family F of subsets is called se-
parating, if given any x4y in & , there is an Fe F such
that either xeF and y4 F, or ycF and x¢F). As in [5] we
say that I’ is a strong Eberlein bicompactum iff it is homeo-
morphic to a bicompact subset of = (D,I") (which is in fact
¢ (D,T")), or equivalently, C has a point-finite separating
family of closed-open sets [5]. We can also preve (by the
method in [61) that I is a Corson bicompactum iff it has a
point-countable separating family of open Eg-subsets.

According to [ 71 a bicompactum X is called monolithic,
if for each cardinal * , and A € X such that |Al &« v it
follows that w([A)) « v .
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A space I’ is called metalindeldf (& -metacompact), if
every open covering of OC can be refined Yy an open peint-
countable (6 -point-finite) covering.

A family % = {Fd:oc € A? is called closure-preserving,
if for every BEA U{I[EJ:0eBi=[U{F e B}l

§ 1, Nor = (I,T"), neither = (D,I") are metalindel3f spa-
ces, since they are countably compact, but not bicompact,
however,

Theorem 1. Every bicompact subset of 3 (I,") is here-
ditarily metalindeldf.

We need the next (see [8])

Lemma 1. Let 3= {B%} be an uncountable family of sub-
sets of T', such that |Bl4n for some neN and al1 Be J3 -
Then there is C ¢ T' and an uncountable subfamily B3’'c T3
such that if B),B, e 53’ and B4 B,, then B,nB, = C.

Let {1V, :neN{ be a countable base of I\{O03. v, =
={xeI:x<l/n}. Let «iv:,neN} be a Countable base of
IN (o f/,1). Let keN and & =, 0, ¥5; let %= {1,...,k}
and 7 X be the set of all one-to-one mappings of % to T .
Let 5?".'2@(?1 " K, For every B = 1095000, ¥ 36 B and @ =
={ny,...,n €A such that 1Bl = ||, define
V(B,n) = ((an),xlx coex (Vnk),,kx T4 1,2 PseTNB)AX(I,T

nl
WB,m) = (W) e (Mg

V(B,¥,r) = ((VF )Tlx ceex (vrnk)’kaﬂ {Ig: B el \BP A (I,T)
)?kxﬁilﬁ: fe TN\ B3,
Proof of the theorem 1: I. The family {V(B,3), Be B,

neA:|Bl =11l} is point-countable, for if x ¢V(B,h), thea
BeT(x) =<4y e :x(4)40 , while both T(x) and A are count-
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able sets.

II. ILet ML,} be an arbitrary open family in bicom~
pact )C . Let us index the points eof U‘l(,a, as iyp:f < %,
where v is the first ordinal with the same cardinality as
uvuf. Let x; = y;. There exists an index 7; and an ele-
mentary neighbourhood of x; V'(B),N;) = V(By,fi;)nW(B],m )N
AX such that B{np(x) =@, BT (x) and V'(Bl,'xil) c
[l .
= ‘ILTI
Suppose that faor every »< w=<7T we have defined the sequen-
ce of indexes {,} , points {x } and neighbourhoods in x
.iv'(a),,ﬁ,,)} such that

a) x e V(B B,) e ‘ZL,X;

b) x e VAl ) V(B ,Ki,_) and x, is the first peint
with this property ’

e) V(B,,A,) = V(BB )nW(B] B ,)nX end B cT(x)
but BJn T (x,) = 4.

Let us consider \J V'(B,,K,). If ,\J V'(B,;B)) = Uy, then

)<
put x, = &, V'(B& M) = @, But if P =Um1\oyyv;(sv'iv)*
+ @, then let x@,fbe the first point of P. Now there exists
an index Tw and the neighbourhood of the point X!
v (BM ,'ﬁ(w) = V(B(u,,ny,)r\w(B@_ M) n 0C such that B(“‘ c
__c_r'(x(w), B(wr\ r'(xtw) =@and V (3(“,,1160) c ‘u,{(w .
Obviously, the conditioms a) - c) are satisfied. We shall
prove now that ‘u\gtv'(B‘w M) =V, Lletye U‘ZLr then
= for some and x
YT o o
£ . i ‘ §:3
clear that A < « . But K.y&g € uau,q’ \HLJ%V (B“ ,n(u,),

then Mo Z thus y(“. =y<w= x‘“‘, and y(“'o €

= y“ for some “ - It is
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&A V (B(wrn(u,

III. Let us prove that for every o< T there exist

) e um?f

only countably many different » < - such that V(By,ﬁy ) =
o

= V(B ). On the contrary, suppose there exist E: | El=
“o’ ‘“’o

#, and V(B(w M) = V(B,,n,) for every w, » € E. Then
—_ — - -0 . — p—
B, = B, = B°, n,=n,=0° VB, A, )sV(B, ) and
V'(By i )+V (B, n,) according to the construction. We
may consider the case fB l=1(B,l, m, = m, =m, and B, B}
because of the uncountablhty of E. Then there exist C c I
and uncountable E'c E such that B, = CuB", for each w e
e E’ and B", NB", =@ for every u+» and «,v € E’ (Lem-
ma 1) and we may consider {w:wu € BE'c ©v? simply isomorp-
hic te w;. As X' is a bicompactum and X, e X for every
@ e E, then there existey ¢ X - a complete accumulation
point of the set Ufx,:w ¢ E'?. IT() < %,. The fami-
1y -{B" e E’{ is disjoint., That is why there exists o €
¢ E’ such that for every wz &, B NnT(y) = @. According
, - - (] -o
to a) x, € V(B ,n(w) = V(B,5" )n W(C,m )n W(B", ,m ) n X
and according tob) x & V(B ,i) = V(B°,‘°)nW(C m,) N
“ “o’ 0.

n'(B"(w )N for all y > (%o+ It follows that for all
°
@ > fo 16,'45 '(B"(“o,no) but W(B"(“o,mo)a ¥, because

My) nB'(‘w = @, This contradicts the conception of the comp-
lete accumulation point.

IV. Thus the family {V (BM ,ﬁ(u): & € % is point-
countable, for if er’(B(a i), ¢4 e¥and E is uncount-
able, then the set of distinct V(B(u 'ﬁ#) which contain x

is also uncountable, because of III. and the fact that
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v (BM ,n(w) c V(B(w,n(“). That is impossible, according te
I, {v (BM ,n(u): @« <t} refines {‘ZLQ,} according to the con-
dition a). Theorem 1 is proved.

In the case of Zt-products the situation is simpler:

Theorem 2. ,(I,T') is hereditarily & -metacompact.

Proof: Let w(f,r) ={V(B,Hi,r):Be H and (B| = [nlf
©= Ufw@r)dech =, F, rent,

I. The family co(fi,r) is point-finite, since x ¢
€ V(B,fi,r) then Bc I' (x,r) ={y:x(y)= 1/r§, and | M(x,r)| =
< 5‘0‘ .

II. Let {%,3 be an arbitrary family of open sets in
Z « (I,M). Index the points of U%, as 1ys: A< § , whe-
re ¥ is the first ordinal with the same cardinality as
UUy . Let x, = B, Vo =B, 7, = 0. By a transfinite in-
duction we shall define the sequences of indexes -[g’(w: “® <
< 7%, points -ixc,_: @< 2+ % and neighbourhoods

v( \-'(x(u,k bk + D:w < ~ % . Suppose that for all

w)s i,
Y < @<z we have constructed such sequences with the fol-
\
lowing conditions: '
a) x,eV(M(x,,k,),0,,k,+ 1)< JZLQ;

'b) x,€ U‘L(,?.\GCEJVV'(T"(x‘,c,koc),'ﬁuc.,kﬂ6 + 1) and x, is the

first point with this property

e) VT(x,,k,),a,,k, + 1) = V(T (x,,k,),8 ,k, + 1) n
NW(BJ,k,) and Bl nM(x,) = 4.

Let us consider P =vkéj¢cv’( l"(xy,ky),ﬁy,kv +1), If

VAl = P, then y, =0, x, = @, Vg = @. Otherwise, let x .o
be the first point of U QLT\ P. Then there exists an index

’Y@, and the neighbourhood of the point x, :V(B,fi,r)aW(B’,m)c

“
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c %Y(W such that Bc M(x,), B'n M(xy) = 4. Let Ko
= max {r,m¥, B&,’ B’. Then M(x 4,k u) 2B, therefore we may
find n =7, such that V (l"(x(«_ ,k(“),n(u_ Wk * 1) =

= V(M (xg kg )W kg + ,1)nl(B;L,k(,‘) c ‘u'a*(,,' The condi-
tions a) - ¢) are obviously satisfied,

(¥ (M yk o) By ko * 1) = U2, Tt may be checked
as in the proof of Theorem 1.
III. Let us prove that if & + v , then v(u,a
= V( f‘(x&,k‘“),i(w,k‘uf 1)+ v( M(x,,k,),n,,k, + 1) ='V,.
Let w>p and Vy =V, , then T x k) = M(x,,k,); 0, =
= E(u; k, = k. According to a) xéLsV(“n'(B:u,k(q_) and
according to b) x, ¢ V,n¥(B) ,k,), because of w > » . It
follows that x, ¢ W(BJ,k)) = w(s(; sk, ) and there exists
o € B, such that x«(g*)?. l/k(w » but then ye Mx, ,k,) =
= T'(x,,k,), i.e. B, n M(x,)+ @ and this contradicts c).
IV. Thus the family <= {v’(r'(xé;,ky);ﬁﬂ kot 1)
: @w<v}indexly refines {V(T (x, ko), by * D:iw=<rs
and the last family is & -point fimite (part I). According

to a) 2% refines { %9,3 .

Remark 1. Theorem 1 and Theorem 2 are true for the
corresponding =, -products of the arbitrary separable met-

ric spaces. The proof is the same.

Theorem 3. a) & (I,') has the closure-preserving co-
vering of compact sets;

b) 1let Sr be the closed sequence, converging to zere,
then 6‘(57,1") in addition, has the 6’-closure-pre¢;erving

covering of finite sets;
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¢) 6&(D,") has a closure-preserving covering of fini-
te sets.
Proof: a) lLet Be R and B = {3’1""'?’1:;’ then

K(B) = (I)y.lx ...X(I)?kxagfp{O% c 6(I,M. Let X =

= {K(B):B e B}% . Obviously, X is a covering of & (I,T),

We shall prove now that I is closure-preserving. Let x; €
o0

€ K(By) and x; —> x,. If x ¢ .U, K(B;) then x, ¢ K(B;) for

all ie N, that is why there exists «; ¢ T" (x,) such that

oci¢ B;, but r‘(xo) is finite, therefore there are infinite-

1y many different i(n) and also there exists «<_e I"(xo)

(]

such that o i

€y = “i(n)¢ Bi(n))’ and x,(« ) e M(x,), but this means

(n) = %o» but then xi(n)(ooo) = O(because

that xo(cco)#o, the last is a contradiction, because x; —
—>x, .

b) and ¢) may be proved similarly. In the case b) X =
U{H meNi, where X, ={K(B,n),B e Bi and K(B,n) =

(Syl\ wn)’rl" coe X(S?)’k\ Wn)xkxiga {03,y 0, where 0 =

i

= {0, goce p°
Obviously K(B,n) is a finite set.
Remark 2. Theorem 3 a) is true also in the case of & -

products of arbitrary compacta. The proof is the same.

Corollary 1. & (D,T') is hereditarily metacompact.
It follows from a theorem in [9] that each space with
the closure-preserving covering of compact sets (we shall de-

note this as CPC) is metacompact.

Corollary 2. a) Every Corson bicompactum is heredita-
rily metalindeldf;
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b) every Eberlein bicompactum is hereditarily &-me-
tacompact;

¢) every strong Eberlein hicompactum has the closure-
preserving covering of finite sets, is hereditarily metacom-
pact and scattered;

d) every Eberlein bicompactum which is embedded in
&6 (I,I") has CPC.

The scattering in c) was proved in [5].

Remark 3. Independently of the author, E.G. Pytkeev
proved that every Eberlein bicompactum is hereditarily meta-
lindelsf,

It is impossible to receive metacompactness in the theo-

rems 1 and 2. It follews from

Theorem 4. There exists a zero-dimensional Eberlein bi-
compactum which is net hereditarily metacompact.
Constructiem: ILet © be the regular cardinal, © > ¥,.
Let My, = My and It =2 . Let T= U{ MpmeNf; 8=
= {0,1,...,1/n,... §, D, = {O,lfn}. Let us denote by )C the
product mUNuch‘w(Dn)oc (it is easy to check that & is homeo-

morphie todTJr,D&). Let P ={xel: for every neN |{¥y& f'n:

:x(9)+03| £ 13, F is closed in X . Really, if x¢ F, then
there exists n, such that |{y ¢ ", :x(3)+0%|>1 i.e. the-
(3

re exist 7y, ¥, € [ :x(yy) = llno and x(p,) = l/no (ry *+77).
°

= (1 1 .
Now W(x) = ( /n‘),a,lx( /no)a,2 x D, ie an open neigh-

1T
« §1;,%,1
bourhood of x and W(x)NnPF = @, This implies that F is a bi~
compactum. Obviously, F ¢ = (D,T), but F ¢ = _(S,T), too, and

therefere F is a zero-dimensional Eberlein bicompactum.
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P is not hereditarily metacompact., Fer every me¢ K and
v e Pn let x, be a point of F such that I'(x,) = 7 ,

x, () = M/n. Tt W = (n)yx T D OnF, let &=

= Ulx:yeT) and H(P) ={V:yeTf, B($) is the fa-
mily of open sets in F., Suppose, U’ refines 2%(@ ) and has
the same "body" (it means UW = U»($)). We-may assume
that W»> {'3.: ¥ € T§,where W, = [N W(B(3),m,) and B(y) n{pi=
= @ and B(y) is & finite subset of T.

lemma 2. If keN, Mc l"k and (M= T ; r';‘ cr‘n and

ITal= % , then there exists 7, € ' and a sequence

{F,:nzk + 13 such that Fy c Iy, |F,! =7 and for all
e UiF meN; B 4 7,

Proof: For every Yoel® and each nZ2k + 1 let
F (¥ =ive P;;‘B(’X) $ 7,%. Suppose that for every gy el
f.hepe exists n ( yo)>k + 1 such that 'Fno('fo)( Pl <% -

As |M =7 > %, then we may find T"'c " and n, such that
n ™ \F . Let ineK§ be the
for all <y, € | “o(To)\ <7 {7

. ©
sequence of distinct indexes of ", Then T \ U, F ()%
° °
o0 N . 0
%0, because | U, rnotyn)k % . Let fe My N, Fno('xn)a
L/ . A
then f3 ¢M’L’{,‘ Fno(ra.n) and f3 e l"no, therefore B(3) 3 7a
for all ne N, that is impossible, because B((3) is finite.
lemma 3. There exists a sequence of distinct indexes
§ ypineN§ such that yy, € ') and B(y) $ yp if nim.

Proof: letk =1, T'=T,, P’ =T, (n22). Then

according to Lemma 2, there exists 7 € r'l and a sequence
{Fln, n>2} such that ¥l c T';‘, lF}ll = ¥ and B(y) 3 77 for

every y e U {Fg,;, nz2%. let k = n, - 1 and we have alre-
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-1

n n -1
ady defined iy} k<n°5'{Fn° ;mzn,% such that ¥.° ¢

n°—1l . s s - '
c r‘n! an =Ty B( ’xj_) * ?j! 1)J<n. (i*J) and fer

n -1
every ¢ U{F° , nzn % and each k<n, B(y) # 7.
n -1 m-1
Then according to Le:ma 2, ifk=n, TI= rn: NS Blgy)
m -
- [}

and 'y = F % \ . B(yj;) there exists y, e T anda
= °
n n
sequence {F,°,n>n, + 1} such that |F °|= = and B(z) $ 7,

n
for every ¥ ¢ nzL'JnoM Fno' Obviously, B( fgrno) $ ¥ for each

-1

n
k<ny (as y, € F% ). B{y)$ 7, by a definition of T .
o (-] (]

Therefore, by the induction, we receive the required sequen-
Ce,

With the help of Lemma 3 it is easy to show that the
family W is at least point-countable.

Let y € F be a point such that if ¥ % ¥4, then y() =

= 0 and if y = 7%,, then y( 'yn) = 1/n, Now ye';r , because
: n

yiyy) = %i and for every 7 ¢ B(7,) y(7) = 0 (because
B( yp) ? 7y if n+m). Therefore F is not hereditarily meta-

compact.

§ 2. The hereditary properties, arised in the theorems
1 - 3 are responsible for many other well-known topological
properties of bicompacta, contained in =\ -products and so-
metimes, we are able to specify some of them.

In our consideration we shall denote the hereditarily
metalindeldf bicompactum as Hl-bicon‘lgactum.

Definition. Name a space OC a super-Fréchet space if
for every Yc XX and x, € [Y], whenever ¥(x,,Y) = A,
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then always there exists a discrete in itself set A c 4 ,
such that Al =2 and [AINA ={xJ.

Obviously, & super-Fréchet space is a Fréchet-Uryson
space, AN

Theorem 5. Every HM-bicompactum is a super-Fréchet spa- -
ce.

Corollary 3. If X is a Corsom bicompactum, and x, is
a G, -point in OC , then there exists an Alexandrov super-

sequence, converging to Xy the length of which is A .
Theorem 6. Every HM-bicompactum has a dense set of Gy~
points.

Theorems, similar to those of 5 and 6, are true for the
hereditary (and not only) preperties, more general than HM.
We drop the proof of all these facts, because of another di-
rection of our note; they will appear in an article written

by the author and E.G. Pytkeev (see this issue).

Theorem 7. Let (L be a scattered bicompactum, then
; a) X is HM iff O is a Corson bicompactum
b) O is hereditarily & -metacompact iff L is an
Eberlein bicompactum.
Every stroné Eberlein bicompactum is already scattered,
so we have
Theorem 8. The next conditions are equivalent:
a) X 1is a strong Eberlein bicompactum,
. b) X is a hicompactum with the closure-preserving
covering of finite sets,
¢) X is scattered and hereditarily metacompact.
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Let 2L be a scattered bicompactunm, .’X,'l c O - a set of
all isolated points of IOC . fl’)ac - a set of all isolated points
of XNUY{ Xp: 3<<3. Then we shall call an ordinal
the index of scattering of XX (is (IC)) if « is the first
ordinal such that X ., = 4.

Obviously, L = U { xﬂ 2B «is (X0)1. xﬂ is dense in
U { Xy: ¥z} and X, is finite for oc = is (X).

The proof of the theorems 7 and 8 may be done by the sa-
me method. Let us prove, for example, Theorem 8.

a) => b) This is Theorem 3 a). b) =>c) It follows
from [ 9] (while the scattering follows from the fact thai:

X = UL Fn:neN?,where Pn is a scattered bicompactum).

¢)=> a) We use the induction. If is () =1, then I
is finite. Let is (X) =3 and for every hereditarily meta-
compact bicompactum,’y such that is (Y )< (3 it is proved
that Y is a strong Eberlein bicompactum. For every y ¢ XL
there exists o < Biye a:oc . Let O(y) be a closed-open bi-
compact neighbourhood ef y such that O(y) n U{ X,: y=t=
={yt. OC{; is finite, 0 \ (Bﬂ is open. let P={Vibe a
point-finite closed-open refining of {O(y):y € &\ acﬁ $ . For
every V, Vc O(y) (for some y), therefore is (V) <3 . V is
an open bicompactum in OC . Let F(V) be & point-finite sepa-
rating family of closed-open sets in V. Then F= U { F(V): |
:Vediu{o(y)ye ocp} is a point-finite separating family
of closed-open sets in )L . The theorem is proved.

Remark 4. P. Simon [5] posed a question: is every scat-
tered Eberlein bicompactum a strong Eberlein bicompactum? It

is claimed in [12] that every Corson scattered bicompactum
is strong Eberlein. If it is so, then all of the conditions
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of Theorems 7 and 8 are equivalent.

Theorem 9. For every ordinal o > 1 and cardinal ~ =
Z $y such that © = |x|, there exists a strong Eberlein bi-
compactum X = X (¢, ) such that w(X) = v and is (X) =c.
Proof: ILet =2 and © Z w,. Let A be a set of power
x with the discrete topology on it. Then L= X (2,7) =
= AU{0} is a one-point bicompactificatiom of A, w(X) = ¥
is (X) = 2. Suppose that for every 3<oc and w: 7 = | 3] we
have constructed the strong Eberlein bicompacta X (3, )
with the necessary properties. lLet = = || and %w =
= ﬁgdoc((s ») be a free union of the bicompacta X(g3,v).
Put X (x,x) = (m%1 5/Cdm)u{6§ a one-point bicompactifi-

0

cation of a locally bicompact space = .’Y) . It is easy
n=1 Ky

to see that X («,v) =X is a strong Eberlein bicompactum,

w(X) =+ and is (X) = o .

§ 3. HM-bicompacta and bicompacta in = -products have
many common properties, but not all. The reason seems to be
in the absence of the "monolithness": there exists even here-
ditarily Lindeldf, separable, but not metrizable bicompactum ~
£11].

On the other hand, every bicompactum admitting CPC is
obviously monolithic. Eberlein bicompacta often admit CPC
(Theorem 3, Theorem 8) (but not always, as it will be seen

later). In this connection let us point also

Theorem 10, Every scattered Corson bicompactum admits

& closure-preserving covering of countable compacta.
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The sketch of the proof: Using the inductiom upon the
index of scattering and Theorem 7 a), we may prove the exis-
tence of a point-countable separating family 7’ of open-clo-
sed sets in L= U4 X, 1« 47 such that for each y ¢ X,
there is Fy e ¥ :Fyn( v 4 x: ¥2c«<?t) ={yt. Now, for each
¥ if Ay =4y}, A, ={z:F,n A _,+ 0} then K, = Ui meBiv
v 3:,5 is a countable compactum. A femily -il%:y e X% is elo-
sure-preserving.

We see that the bicompacts admitting CPC deserve a spe-
cial investigation.

let ¥ = {F} be & closure-preserving family of compacta
in a space X . Let {4, } be & family of maximal centred sub-
systems of ¥ . Then for every 3 : & .= N{F:F e F i+ 5,
and $,  is a compactum, Obviously, if o« 4 2 , then & n ¢, =
= @, A family {q:"} is discrete in X , since if x € X , then
Ve = XNV {Fe ¥ :Fdx}is an open neighbourhood of x, in-
tersecting at most one & (only in the case x € Qd: ). I X
is a bicompactum, then the system {@di is finite amd & =
= UQ _ is compact. We shall call the set d=09¢, a maxi-
mal set for the family F .

Lemma 4. Let X be a bicompactum, w(X) = v and gg<
< A &£ 1 . A fanily ¥ is a CPC on L . Then there are a bi-
compactum F ¢ )( and & compactum Mc F such that

1. V = Int, F cannot be covered by the subfamily Fe#
such that | 51 < Q.

2, For every open O such that OoM Int,, (F\O) can be
covered by the subfamily 3“<c % such that 1%l < A .

Proof: I. LetF =X , &, = ¢ - a maximal set for
% in Ff V, =F, 0, = #. Assume that for every n<k we have
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already defined the sequences iF,t, {@ni, {vni and {0,%
(n< k) such that

a) =X\, Fn0is Yy = Inty Fiii 3, is a maximal
set for K ={BnF.Be$“§ 0, 1> ¢, , and is open in X

b) V, cannot be covered by the subfamily F'= & such
that | #/| < A .
Consider Fy_, = X \; & . 0y, @k -1€ Feoys Ve #0. If there
is an open neighbourhood O(Qk_l) such that V.
= Intm (PN OC d)k_l))# ¢ ard V) cannot be covered by a sub-
family /< % such that |#l< A | then put Opy = 003, ),

j .

Fyy =F_ 1 0y = XN\, 05 and Vi = Inty F . Bat if fer
every neighbourhood 0($, ;) Intyp (P 3N 0($, ;1)) can be
covered by a subfamily ‘< 9 such that |¥’|< A | then
pat F, =V = &, =8, 0, = 8.

I1I. There exists such a natural k>0 that Fk = Vk =
= @, =0, = f. On the contrary, suppose for every natural
k F,+0, O 1+0. Let x, € ®,. Then {x by is a discrete
set in XX . Really, if x $k(?4 Ogy then Vo =X\ U {Fe¥:
:F3x} is open and Ven Py = # because if x¢2‘c d’k’ then
there is F ¢ ¥, such that Fpx, But if x 61;@1' 0y, then the-
re is the first natural k such that xeok » but according

to a) Okn(\z)ho F) =40, sookn(u{xk.lvk})—ﬂ. Thus
°

{xk7’012=1 is discrete in a bicompactum; a contradiction.

III. Let k be the least natural number such that R =
=@, then'F, ,+6, o, _,cF _, and V, _, = Inty F,_, cannet
be covered by a subfamily %’ c F such that | Fl< A ,while
for every open 0( ;) Inty (B, O( $y-1)) can be cover-
ed by such a subfamily. Now put F = F _,, ¥ = ék-l' v

= Intw F, and Lemma is proved.
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Theorem 11. Let X be a .bicompactum_, admitting cpC,
U< L be open.

Then there is an open V < 9, such that w(V) £ %, (and thus,
the set of the points of a countable local weight is dense
in ).

Proof: If w([%U,]) =% > %, where [Uylc Y and U
is open in X , then let V & [‘IL:LJ, F and M are chosen as in
Lemma 4 (for X =[U ) and A = %,). V\M+@ (otherwise VcM
but w(V) = &£,, while M is compact) and V\M is open in [%%,1],
therefore (V\M) ” U, *0 and open in U, and so in X . Let
z € (V\M) N ‘Ul, then there are open sets O and ¥, such that
0OM, W;32z and ONW; = @. Now W = Wy N (VM) n U; is open in
X and ¥=V\OSF\O, therefore WcInt, (F\0) and according
to lLemma 4 can be covered by a subfamily ‘< F such that

lfw"’.|< %, Hence w([V]) = w(V) £ .

Gorollagx 4. Every non-metrizable bicompactum, admitting

CPC is not homogeneous.

Theorem 12. Let O be a bicompactum admitting CPC,

w()C) = v and Hg < A £ v . Then if A4 is regular, then the-
re is a family {V§ of pairwise disjoint open sets with a coun-
table local weight such that [{Vi| = A .

Proof: Let V be chosen as in Lemma 4. Suppose that for
every o < ¢ < {1 (1) we have defined a system {V,§ of open
sets such that

a) [Voc]xc V and f‘{,cjx can be covered by a countab-’
le subfamily of ¥

b) VN LULV,: < o« 3]= 4.

Let us construct V. . As < 0.(A) and because of a)
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U{V,(, ‘o < 943 can be covered by a subfamily /s ¥ such
that 1F’l<A . But ¢ 1s closure~-preserving, so [U{V :
tav <y %) also can be covered by such a subfamily. Then
WU=VNIVEV, < 7}32!)* 0 is open and widL) = A .,
Let VZ’ € % be an open set which can be covered by a count-
able subfamily of @& (V) exists, because of Theorem 11). Ob-
viously, a) and b) are satisfied.

Corollary 5. Let X be a bicompactum, admitting CPC.
Then

a) c(X) =w(l);

b) XL contains an open dense metrizable subset with the

\

local countable weight.

Theorem 13. Let X be a bicompactum admitting CPC,
W) =« and ¥ ,< A 4% and A 1is regular. Then there
is a compact set M ¢ I which cannot be represented as the

intersection of less than A open sets.,.

Choose M as in Lemma 4.

CLorollary 6. Let I be & bicompactum admitting CPC.
Then, if ¥, (X) is a pseudocharacter of compacta in I ,
then )

¥ (X)) = c(X) =wlX) =s(X) =121,

Answering the question of Rosenthal [4): does every
non-metrizable Eberlein bicompactum contain a compactum
which is not Gy ?

Benyamini, M. Rudin, Wage, recently gave a counter-example.
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Their bicompactum does not admit CPC according to Theorem
00

13. Another bicompactum of this type is ;1:[1 X;, where X,

is a "double circumference" of Alexandrov [11] (each Xy is

embedded in G (I,") and hence admits CPC).

'lheorem' 14. Every bicompactum J)C admitting CPC is a
Fréchet-Uryson bicompactum.
It is sufficient to prove that t(X) £ #  (see [7]).
If Ac then B =U{[S]:ScA and IS|<% §. Let ¥ be a
CPC on X. If F e ¥ , then put QW = BnF,. & is clo-
sed in F (because t(F_) < % ) and thus eéch &, is compact.
If x, e [U{d, : e MIINUL{D :xe 3, then x, €
€ U{F,  :x € '} and so there is wo:onFd,o\ Q)wo, thus
Xo¢ B. It follows that {{)ﬂj is also CPC, but only on the set
B. Therefore B is metacompact, and B is obviously countally
compact, so B is bicompact, thus [A] = B and t(X) £ ¥,
Every linearly ordered Eberlein bicompactum is metriz-

able [13].

Theorem 15. Every linearly ordered bicompactum with
CPC is metrizable.

Proof: Let ¥ be a CPC ox'l X . Suppose that I is not
metrizable, Let F; € & . Then U= L\ F) = U (ay ,by ) and
(a  »b, )N (3[3 ' ) =@ (< #p3). If every interval (a. ,b. )
is metrizable, then 4 is metrizable (as a free union of me-
tric spaces). Then L = U U Fl is a union of two metric spa-
ces, and hence is an Eberlein bicompactum [14], so & is me-
trizable [13] and that is not so. Let (al,bl)s {(ad b )3
and (a;,b;) be not metrizable. Then (a;,b)] is also not met-

rizable.
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Using the induction, we receive a system of segments [‘n»bﬁj

and of compacta {Fn} such that
a) [a ,1,bp4qlcC(m b)) (a,#dp)
b) Pn+1f\(an,bn)#=¢, Fre10 ey 1,0 4q) = 2.
Let y e Fn+1/\(ln,bn) am x, be an accumulation point of {y, .

Then x ¢ F), and % is not closure-preserving, a contradiction.

§ 4. Problems

1, Is it true that every bicompactum admitting CPC is
embedded in &(I,") ?

2., Is it true that every scattered bicompactum admitting
CPC is a strong Eberlein bicompactum?

3. Let K be a compactum, X - HM-bicompactum. Is it true
that t(C (K,X)) £%  ? It is true, if X is hereditarily Lin-
deldf [15] , or Corson bicompact (the last was proved by Pyt-

keev).
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