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A NUENHUIS-TYPE TENSOR ON THE QUOTIENT
OF ‘A DISTRIBUTION
Jarolim BURES, Jiti VANZURA

Abstract: Tensor fields of type (1,1) defined on the
vector bundle over a differentiable manifold which arises
as the quotient of an integrable distribution are studied.
For a couple of such tensors a Nijenhuis-type tensor is de-
fined and its applicability to a certain generalized inte-
grability problem is showed.
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let M be a manifold, dim M = m, and let DcE be two
integrable distributions on M with dim D = d and dim E = e,
We shall denote by F the factorbundle E/D and by & the pro-
jection E —>»E/D. Obviously dim F = e - d. We shall consider
a tensor field T of type (1,1) on F, i.e. an endomorphism

T:F—>F,
Let X be a vector field on M which is an infinitesimal

automorphism of both the distributions D and B, i.e. a vec~
tor field satisfying the following two conditions

Y;eD =1[X,Y;1eD

Y,e B =>[X,Y ek
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With respect to such a vector field X we can define the
Lie derivative LxA of any tensor field A of any type on F.
We shall make this definition explicit for tensor fields
of types. (1,0) and (1.1) only. Let ¥4 be the local 1l-pa-
rameter group of local diffeomorphisms corresponding te
the vector field X. Obviously @, .(D) = D and P, 4(E) = E
so that Pix induces a local isomorphism (which we denote .
by the same letter) Pyx :F—> F. Taking a tensor field ¥
of type (1,0), i.e. a section of F, we define
-1 ¥
(Ly ’f)x = %imo(z'%{—rx .

If Ye ¥ is a vector field such that &Y = ¥, then it
is easy to see that there is Ly ¥ = o ([X,Y1).
For a tensor field T of type (1,1) we define first the ten-
sor field 9;,3;‘1' by (921 ), (V) = ?3‘ (%t(x)(q%'ﬁ')) where
'w‘r'el?x and Fx denotes the fipre of F over the point xe M.

TQt(x) is the value of T at @, (x). We set

| o o,
(g Dy = in, =

It is easy to see that for any section Y of F there is
L) = (LD (©) + ML)
We shall now restrict to the study of tensor fields
of type (1,1) having a special property. This restriction
is quite natural and was motivated by the integrability pro-
blem for the tensor fields of type (1,1) on the factorbund-
le F. Let us recall that a local infinitesimal automorph-
ism of D is a vector field X defined on an open subset

Uc M such that for any vector field Ye D defined on an open.
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subset VcU there is [X,Yle D on V. Let us describe the
coordinate form of a local infinitesimal automorphism X of
b. Because the distribution D is .integrable, we can find a
chart (x}...,x®) such that locally D has the basis

,——8—3 o In terms of this chart X has the férm

—9_
oxt ’ ox

d 0o mv . I°)
- il m i,.4+1 m
X = %E.qa (Xyeee,X )—8x1 + &:Zolﬂa (X7 Tyeee,Xx )——i-ax v

We shall denote by 8y the germ of a vector field or a sec-

tion of F at the point x.

Definition: We shall say that a tensor field T of ty-
pe (1,1) on F has the property (P) if the following condi-
tion is satisfied for any xe M: If gx(’i‘) is the germ of a
local section X of F for which there exists a local infini-
tesimal automorphism Xe E of D such that gx(’l\f) =g (X)),
then there exists a local infinitesimal automorphism Y€ E

of D such that gx(T?(') = gx(a'rY).

Lemma: A tensor field T on F has the property (P) if
and only if for any Ye D there is le‘ = 0.

Proof: (i) Let I‘IT = 0 for any local vector field Y
belonging to D. Let us take ’f = g X. x) For any local voc'~
tor field Ye D we have

aLXY) = ~a[¥,X"1= = L(TK) = - (LyD(D) - MLD) =

= - M(LX) = - T(arly,X)) = «[X,¥]) = 0
because X is an infinitesimal automorphism. This ah;vn that
X is again an infinitesimal automorphism.

(ii) Iet T satisfy the property (P). For any vector

- o - -

x) with Xe B being,a local infinitgsimal gutomorphism of D.
We ‘choose any X € E such that TX = o X,
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';erx we can find a section X ef F such that % =¥ and

¥ = of X with XeX¥ being a lecal infinitesimal automorphism
of D: This can be immediately seem from the coordinate form
of a local infinitesimal automorphism of D. Because T has
the property (P), there is a local infinitesimal automor-
phism X’ of D such that TX = o X’. For any Ye D defined on
an opem neighborhood ef x we have

(L) (3 = (LD (X)) = (Ly(10), - (LD, =

= (x[Y,X7) - (Nl ¥,XD)) = (T(a[X,¥1)), - (ar[X",¥]),=0
which finishea the proof.

Let T, T, be twe tensor fields of type (1,1) defined
on F and satisfying (P). We are going to define a tensor
field [T,,T,] of type (1,2) on F. Let ¥,WcF, and let us
choose local infinitesimal automorphisms X,Ye E of D in such
& way that (arX)_ =¥ and (oY) = W. We denote X=aox, ¥=
= Y, Furthermore we choose local infinitesimal automorph-
iems X°,X" Y, Y*c¢E of D such that Tl’i =xX’, 1'1”!' =y’
T,X = or X", T,Y = o Y". We set

[T, 751 (%, = (¥LX°,Y"1) + @ ([X",Y"1), +
+ (M T L X, Y1) + (T, % X, Y1) - (T, o[ X", Y1), -
- (ol X,X"]), - (T [X°, Y1), - (Tl X, X9,

Of course, it is necessary to show that [Tl,Tsz(V,'\?) does
not depend on the choice of X,X’,X" and Y,Y’,Y* with the a-
bove properties. Let us mtice that because D and E are in-

tegrable, we can, in a neighbofhood of any point, find a

1 o 9 _ .
chart (x*,...,x*) such that -y CLLE . is a local ba-

sis of D, and %1— ;..'.,% is a local basis of E, With
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respect to this ¢hart any local infinitesimal automerphism
X of D belonging to E has the form

Q

X = .%1 ai(xl,...,xn)-aé;i- + Léﬂ ai(xdﬂ,...,x')-—a?—x-i- .
Using this form ef -a local :}nfi'nitesiml automorphism of D
it is a matter of the direct calculation to show that
CTI,TZJX(’\'?,?") does not depend on the above ne/ntioned choices.
We leave this calculation to the reader.

In the sequel we are going to present one applicatieam
of the tensor introduced above. We shall consider a tensor
field T of type (1,1) on F Yhich satisfies the conditiem (P).
Let us suppose that there exists a matrix C = (cef) of the
dimension e~d such that for any x €M we can find a basis 71,
?’le-d of F  such that with respect té this basis there is
15, = &

x p=1 g
field T is integrable if to any point xe M there exists a

¢® %, = 1,...,e-d. We shall say that the temser

chart (xl,...,x‘) defined on an epen neighborhood U of x and

such that
(i) ° Treeos 9 3 is a local basis of D on U.
dx 9x
(ii) 0 Treeees 9 is a local basis of 'E on U
3x 3 x*°

a ed B o
(iii) T(ﬂ—a—xTr) =/3§4 c "——a—xmon u.

We shall restrict ourselves to the case where T2 = - ig, i.e.

to the case of an almost complex structure. Here C is the

( 0 id)
-ia o

Of course, much more general results can be easily obtained.

matrix
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For this purpose compare the. results in [1]. We shall pro-
ve the following

" Proposition: Let T be a tensor field of type (1,1) on
F satisfying the condition P and such that T2 = - id. T is
integrable if and only if [T,T] = O.

Proof: As usual, it can be easily‘seen that [T,T] =0
if the tensor field T is integrable. Thus it remains to pro-
ve that [T,T] = O is also a sufficient condition for the in-
tegrability of T. To any point xeM we can find a chart =
= (xl,...,xm) defined on an open neighborhood U of x such
that (i) g(U) = Uj=<U,>U; , where U, U, and 03 are open

subsets in Rd, R®4 ang RE- respectively, (ii) —= ,...
9X

CH . ) 2
...,—a-—xa- is a local basis of D on U, (iii) _a;I'".’_-_E)?

is a local basis of E on U. We introduce functions ’g’gy i, =

=d+ 1l,...,m by the equality

4
m(:u——-«) sEarie i

]
Because --é--i- is a local infinitesimal automorphism of D and
x

2)
T has the property (P), it follows easily that . 2&*411————-

3 xJ
is again a local infinitesimal automorphism of D, i.e. there
is :

¥y
_—é—E =0fori,j=d+1l,...,mand k = 1,...,d.
x

We shall denote by D’ the distribution on U generated by the

. 3 .
vector fields -—a—a;I yeceey « The projection ¥ indu-

x 2x°
ces an isomorphism.D’—> F, which enables us to transfer the
tensor field T from F to D. We denote by T’ the tensor field

on D obtained in this way. Obviously 7°2 = - id. i.e. any
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leaf of the distribution D is provided with the almost com-
3 z j 3
. = = yd .
plex structuge T. Moreover we have T P ?5+4 ?'1'—3;'3
ayy

Because —a—k—- =0fori,j=4+ 1l,...,mand k = 1,...,d
X

the almost conip]ex structure T’ is (in the obvious sense)
the same on all the leaves of D. Taking any leaf of D it can
be immediately seen that [T,T] = O implies the integrability
of T on this leaf. This shows that there is a chart'(yl,...

...,ym) defined on an open neighborhood of x, such that

yt o= xl, i=1,...,4
yi= f]‘(xd+1,...,xm), i=d4+1,...,e
y1 = xl, i=e+1l,...,m

2 0
and with respéct to which (i) —Treer—/3 is a local ba-
x ’ ax

)
sis of D, (ii) —é—I""’_f—e is a local basis of E, (iii)
x x

e .
T(ar 5 T) = ﬁ"__zoh,,&g-ﬂ‘ 3 » 1, =4 +1,...,e, where
y
(eg) is the matrix ( 0 id) .
-id 0

Further applications will be subject of a forthcoming
paper.
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