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COMMENTATIONES MATHEMATICAE UNIVERSITATI5 CAROLINAE 
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A NUENHUIS-TYPE TENSOR O N THE QUOTIENT 
O F A DISTRIBUTЮN 

Jarolím BUREŠ, Jiří VANŽURA 

Abstract: Tensor fields of type (1,1) defined on the 
vector bundle over a differentiable manifold which arises 
as the quotient of an integrable distribution are studied. 
For a couple of such tensors a Nijenhuis-type tensor is de­
fined and its applicability to a certain generalized inte-
grability problem is showed. 

Key words: Differentiable manifold, integrable dis­
tribution, tensor fields. 

Classification: 58A30 

Let M be a manifold, dim M = m, and let D c E be two 

integrable distributions on M with dim D = d and dim E = e. 

We shall denote by F the factorbundle E/D and by st the pro­

jection E — > E / D . Obviously dim F = e - d. We shall consider 

a tensor field T of type (1,1) on F, i.e. an endomorphism 

T:F—*-F. 

Let X be a vector field on M which is an infinitesimal 

automorohism of both the distributions D and S, i.e. a vec­

tor field satisfying the following two conditions 

,Y1<sD --^iX^^eD 

Y2ei «=Hx,f2;uE 
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With respect to such a vector field X we can define the 

Lie derivative LJL of any tensor field A of any type on F. 

We snail make this definition explicit for tensor fields 

of types, (1,0) and (1.1) only. Let sp\, De tlle ioc*1 1-pa-

rameter group of local diffeomorphisms corresponding t© 

the vector field X. Obviously 9>t*(D) = D and <jPt*(E) = B 

so that g>tr4C induces a local isomorphism (which we denote 

by the same letter) g>^* :F—> F. Taking a tensor field X 

©f type (1,0), i.e. a section ©f F, we define 

(I* X ) Y = lim - ^ * E . 

* x U->0 t 

If X e B is a vector field such that arX = ?, then it 

is easy t© see that there is L I = <rf(£X,X]). 

F©r a tensor field T of type (1,1) we define first the ten­

sor field y ^ T by (9;i T>xtf> - 9 ^ t ^ ( x ) ( f f ^ ) ) where 

v c F and F denotes the fibre ©f F ©ver the point xelt. 

T (x) *a tne value °* T at g>t(x). We set 
(jlitTL - Tx 

(11. T> = lim -^-2 * * . 
^ * t->0 t 

It is easy to see that for any section X of F there is 

L^TX) = (L^T) (?) • TCLJ^X) 

We shall now restrict to the study of tensor fields 

of type (1,1) having a special property. This restriction 

is quite natural and was motivated by the integrability pro­

blem for the tensor fields of type (1,1) on the faetorbund-

le F. Let us recall that a local infinitesimal automorph­

ism of D is a vector field X defined on an open subset 

U c M such that for any vector field X e P defined on an open. 
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subset Veil there is [X,Y3eD on V. Let us describe the 

coordinate form of a local infinitesimal automorphism X of 

D. Because the distribution D is .integrable, we can find m 

chart (xj.•.,xm) such that locally D has the basis 

3 3 
r i • • • i * • In terms of this chart X has the farm 

dx1 dx d 

X = jaV(«*...,x*>-^ • .2? 4«
i(xd*1

f...f«P)--2_ i--1 9 x i **oU4 9 xi 

We shall denote by g the germ of a vector field or a sec­

tion of F at .the point x. 

Definition: We shall say that a tensor field T of ty­

pe (1,1) on F has the property (P) if the following condi-

tion is satisfied for any x£li: If gx(X) is the germ of a 

local section X of F for which there exists a local infini­

tesimal automorphism X e B of D such that gx(X) = g^ofX), 

then there exists a local infinitesimal automorphism Ye IS 

of D such that gx(TX) = gx(<rrY). 

Lemma: A tensor field T on F has the property (P) if 

and only If for any Yc D there is l^T = 0. 

Proof: (i) Let I^T = 0 for any local vector field I 
rj x \ • 

belonging to D. Let us take X = afX. ' For any local vae*-

tor field Y e P w e have 

jr[x;Y] = -#tY,X'l= - L^TX) * - (I^TXX) - T(LyX) » 

= - Td^X) = - T(jrtY,Xl) = T(3rl.X,Y3) » 0 

because X is an infinitesimal automorphism. This shows that 

X is again an infinitesimal automorphism. 

(ii) Let T satisfy the property (P). For any vector 

x) with X e B being,a local infinitesimal automorphism of D. 
We choose any x'e E such that TX * # X . 
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v e F we can find a section X ef F such that X^ == v and 
»*v 

X = or X with X e l being a local infinitesimal automorphism 

ef D: This can be immediately seen from the coordinate form 

of a local infinitesimal automorphism of D. Because T has 

the property (P), there is a local infinitesimal automor­

phism X' of D such that TX * ar X#. For any T e D defined on 

an open neighborhood of x we have 

(XfT^Cw) « ((LrT)(X))x -- (Ly(TX))x - (KLyX)^ = 

« (*i:TfX'j)x-(T(^CTfXJ))x =- (T(of tXfTJ) ) x - (* C X'fT3)x=0 

which finish** the proof. 

Let Tlf T2 be two tensor fields of type (1,1) defined 

on F and satisfying (P). We are going to define a tensor 

field CTlfT2] of type (1,2) on F. Let v%weF x and let us 

choose local infinitesimal automorphisms X,Te E of D in such 

* way that (arX)x * v and (tfX)x « w. We denote X * orX, T * 

• 3f X. Furthermore we choose local infinitesimal automorph­

isms X',X",T',T"eE of D such that T-jX * #X', ^ T » at T', 

T2X * of X", T2T • # T " . We set 

tTlfT2]x(^,«) « (*ri:x'fT"l)x + trr(CX
w,T'l>x • 

• (T^srCX.XJ^ • (T^tfCX.TJ^ - (T^IX-.TJ^ -

- (T-^CX.T*.]^ - (T2^ri:X
#
fTJ)x - (T2*-C XfT!0x. 

Of course, it is necessary to show that CTlfT2Jx(vfw) does 

not depend on the choice of XfX'fX" and TfT*fT" with the**-

hove properties. Let us notice that because D and E are in-

tegrable, we can, in a neighborhood of any point, find a 

chart (ac 1 , . . . , .* 1 1 ) such that % l»«-«» a* is a local D*~ 

°x dx 
9 3 

s i s of D, and -r , . . . , i s a local basis of E. With 
dxx 3 x e 
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respect to this chart any local infinitesimal automorphism 

X of D belonging to E has the form 

A * mjz>t a KX ,.. - ,x^/— 1mi + • .2~t a vx , • •.,x } 
tt ' ' ' ax 1 +?ZU1- * ' ' ' 3: 

Using this form of a local infinitesimal automorphism of D 

it is a matter of the direct calculation to show that 

CT.j,,T2-Ix(v,w) does net depend on the above mentioned choices* 

We leave this calculation to the reader. 

In the sequel we are going to present one application 

of the tensor introduced above. We shall consider a tensor 

field T of type (1,1) on F which satisfies the conditio* (P). 

Let us suppose that there exists a matrix C » {ej~ ) of the 

dimension e-d such that for any x c M we can find a basis v-p 

ve-B- of F such that with respect t6 this basis there is 
Tx^°° = i?*4 c<* */3 s !*•••>*'&• We »nall say that the tensor 

field T is integrable if to any point x eM there exists a 

chart (x ,...,xm) defined on an open neighborhood U of x and 

such that 

(i) r,.M, * is a local basis of D on U 
8 xx d xa 

( i i ) —.—j- f . . . # t —-—-. i s a local basis o f t on U 
1» » ^ e 

3 x ox 
3 e-ji * 9 

(iii) T(*r - ^ r ) - ̂  cj * a x d ^ on U. 

We shall restrict ourselves to the case where T^ « - idf i.e. 

to the case of an almost complex structure. Here C is the 

matrix 

( ° ") 
l-id 0 / 

Of course, much more general results can be easily obtained. 
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For this purpose compare the results in [1]. We shall pro­

ve the following 

Proposition: Let T be a tensor field of type (1,1) on 
2 

F satisfying the condition P and such that T » - id. T is 

integrable if and only if [T,T] « 0. 

Proof: As usual, it can be easily seen that [T,TJ = 0 

if the tensor field T is integrable. Thus it remains to pro­

ve that [T,T] » 0 is also a sufficient Condition for the in-

tegrability of T. To any point xeU we can find a chart gp = 

» Cx ,...,xm) defined on an open neighborhood U of x such 

that (i) <j?(U) =- U-jX^xU^ f where U-̂ , U2 and U^ are open 

subsets in IT, Re~" and BP"e respectively, (ii) Y ~ »••• 

# — is a local basis of D on U, (iii) «,..., — 
dxd 3xX . 3xe 

is a local basis of E on U. We introduce functions ft* i, j 

d + l,...,m by the equality 
o fH%> 

ax1 *=<*+-< ° - 9 X J 

Because r is • local infinitesimal automorphism of D and 
3 x - • a 

T has the property (P), it follows easily that . *L A*g \ 7 
^»oHr » A 3 X

J 

is again a local infinitesimal automorphism of D, i.e. there 

1 = 0 for i,j * d • l,...,m and k * l,...,d. 
9x* 

We shall denote by D' the distribution on U generated by the 

3 7^ 

vector fields g^j ,...., y . The projection T indu­

ces an isomorphism. D*-—> F, which enables us to transfer the 

tensor field T from F to D. We denote by T' the tensor field 

on D obtained in this way. Obviously T' -= - id. i.e. any 
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leaf of the distribution D is provided with the almost com-

plex structure T. Moreover we have T# y = # -S • or $ ?• 
3X1 *^+* x dx5 

Because *— = 0 for i,j = d + l,...,m and k = l,...,d 
dx 

the almost complex structure T* is (in the obvious sense) 

the same en all the leaves of D. Taking any leaf of B it can 

be immediately seen that [T,TJ = 0 implies the integrability 

of T on this leaf. This shows that there is a chart (y ,..• 

..•,ym) defined on an open neighborhood of x such that 

y1 = x1, i = l,...,d 

y1 = f^x** 1,...^ 3 0), i = d + l,...,e 

y 1 = x1, i = e + l,...,m 

and with respect to which ( i ) *--••• i 3r *-s * local ba-

a a? a? 
sis of D, (ii) T t . . . » -8 « local basis of E . (iii) 

3* 1 dxe 

T(^ T) = S .ef JT T , i , j = d + l , . . . , e , where 

(8^) i s the matrix ( ° i d ) . 1 V-id 0 / 

Further applications will be subject of a forthcoming 

paper. 
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