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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21, 1 (1980) 

REMARKS ON MULTIPLE PERIODIC SOLUTIONS OF NONLINEAR 
ORDINARY DIFFERENTIAL EQUATIONS 

Pavel DRABEK 

Abstract: We prove the existence and multiplicity of 
periodic solutions for nonlinear ordinary differential equa­
tions of the type 

u"(x) + g(u(x)) = f(x) 
under the various conditions upon the function g. 

Key words: Nonlinear ordinary differential equations, 
periodic problems. 

Classification: 34C25 

*• Introduction. Our starting point have been the pa­

pers [l]
f
C2]. There are given in [2, Theorem 101 some con­

ditions upon the right hand side f to obtain at least one 

solution of periodic problem 

u"(x) + g(u(x)) = f(x) 
(1) Г 

l u( 
i(0) = u(T), u'(0) = u'(T), 

where T6(0,«ir) and g is X -periodic function on TR with so­

me X > 0. In this article we present some multiplicity re­

sults for the solvability of (1) using the approach indica­

ted in Tl, .26.10] and in f2, Theorem 10], under the assump­

tion that g is a bounded function, generally not periodic, 

with bounded derivative on K . The presented sufficient 

conditions for the solvability of (1) make restriction only 
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on the Lj-norm of the right hand side t in distinction 

from the conditions presented in 1121. 

If we put g(x) = sinx, in (1), we obtain the mathema­

tical pendulum equation. 

2. Preliminaries. Let T > 0 and let us denote C0, the 

Banach space of all continuous and T-periodic functions de­

fined on a real line R with the norm 

II u 11 _ = max iu(x)l. 
C0, Xt iR 

Let, further, g be a continuous real-valued function 

such that g' exists almost everywhere in E and there ex­

ist constants M.^0, K > 0 , tQ> 0 such that 

(2) |g(|)UMf ig'(pUK 

for a l l i£ I > t . Assume, in addition, that g i s not a 

constant function. 

Definition. For p, q such that 

(3) a a i n - L s t f ^ q - P ^ J 3 ^ g(£) = ^ 
§ <s IK * f e f t v 

we put M̂  n - M J u M ; n , where 
K p,q p,q p,q 

Mp,q = * d £ R ^ C p C ^ K , O ^ c ^ c ^ f £ <cXfC2> => 

~ * g ( f ) > P , f * < -c 2 , - c 1 > - > g ( | ) < q , d 4 c 2 - c1^, 

M q = { d 6 R ;£c19c2e R. o ^ C l < c 2 , f e <c1,c2>^-=5> 

«^>g( | )<q, § 6 < - e ^ - c ^ «-> g (£)>P, d^c 2 - c.jj. 

If sup U n ^ oo for each p, q, satisfying (3) , then g i s 
Pf H 

called the expansive function. 

Assume that the sets g (G), g"C5) do not contain a 
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nondegenerated interval. Slightly modifying the proof of 

Theorem 8 from T21 we obtain 

Lemma 1. Let f e C0,, xQ e R and K<sr2/ir. If u.^, u2 

are solutions of (1) such that 

u1(xQ) = u2(xQ). 

Then u-* and Ug co inc ide on E „ 

There i s g iven in £21 a sketch of the proof of 

Lemma 2 . Let f € C0, and K< tf 2/1T. Then the D ir i ch l e t 

problem 

u " ( x ) + g (c+u (x)) = f ( x ) , x e ( 0 , T ) , г 
l u( 

(4) 
.(0) = u(T) = 0 

has a unique solution u e C «0,T» for arbitrary c 6 R 

(see also CI, Sec. 4.14, 4.191). 

3. Main result 

Theorem. Let f e C 0 , and K-csr /2r. Then the problem 

(1) has at l e a s t one T-period ic s o l u t i o n i f 

G < q ^ i f f ( x ) d x ^ p < G , 
x 0 

T*M + T f 1 i f ( x ) | d x < s u p 11 „. 
J0 p , q 

Proof. Denote by If ~ the s o l u t i o n of (4) and put c , i 

vc,f ( x ) = c + V C ( f ( x - kT) 

for x 6 < k T f ( k + l ) T > (k i s an i n t e g e r ) . Then v f l f i s a T-pe-
c,i 

riodic solution of (1) if and only if 

T T 
/g(v. ^(x))dx = / f(x)dx. 

J0

 c
»

r
 •'o 

Let us define a function <£<«.: IR — > R > 
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$f:c )—> J g(vc f(x))dx. 

The Rollers theorem implies the existence of such xc e (0,T) 

that vCff(xc) = 0. Using this, we obtain 

(5) 1 v ' .p(y)l ^ | f g(c+tf .p(x))dx I + | / f (x)dx I -4 

T 
£ m + J* I f ( x ) l d x , y £<0 ,T>, c e K , 

(6) l ^ f f ( y i ) - v c > f ( y 2 ) l - z s u g T > l ^ > f ( z ) \ | y i . y 2 l A 

£ A + T / l f ( x ) l d x , y l f y 2 € < O f T > f c 6 R • 

From (6) and from the assumption TrU + T I i f (x)l dx < 

< sup 14 „ we o b t a i n c , , c 0 G R such t h a t K p ,q 1» 2 

(7) $f(c1)<Tq and $f(c2)>Tp. 

Let us suppose that lim d^ =- d • Bien according to 
nv~*>oo n ° 

(5), (6) the set ivi° -*?„.--i satisfies the assumptions of 

[3, Theorem 1.5^4] and so it is relatively compact in the 

space of two times continuously differentiable functions 

on <0,T>. This fact together with Lemma 2 imply that there 

exists exactly one v^ ~ which is the solution of (4) and 
°9 

<$.p(d ) = lim 3>.p(d̂ ). So D.» is a continuous function and r o m-^o& r n x r 

from (7) we obtain c-> G(C,,C 2) such that 

$f(c3) = J fix) dx. 

Then vc f is the solution of (1). 

Corollary 1, Let feC0,, K<jr /Or. Suppose, moreover, 

that g is an expansive function, sup M1 = oo , i«l,2 and 

S (2̂ > S~ (G) are both empty or both infinite. Then the 

problem (1) has infinitely many distinct solutions if and 
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only if 

& < | JTf(x)dx<G, in the caae g^CG) « g"1^) » 0; 

Q < ^ J f(x)dx<G, f = G, f = Q, in the caae g'^Cp+flf, 

g_1(G)*0. 

Proof. There are p,q e R auch that 

G<Q-=T J^f(x)dx-^p<Q, 

in the caae g~ (G) = 0, g" (G) = 0. Because of sup M* = 
P»" 

= oo , i=l,2, we obtain "fcn^n=i
 c ^ t cn^ cm :for n + m » 

$f(cn) =J^
Tf(x)dx. If g"1(G)#0, g"'1(G)^0 then for each 

k-. £g (G), resp. k 2&g" (G), the function u = k,, reep. 

u = k.->, i3 the eolution of (1) with f = Q, re9p. f = G. The 

nece3sity of the condition follows from the fact that each 

periodic aolution u of (1) must satisfy 

/TgCu(x))dx = jTTf(x)dx. 

Corollary 2. Let f £ C0,, K<ar /OT and, moreover, let 

g be a if -periodic function. Then the problem (1) has at 

least two distinct solutions u^, u2 such that lu^O) | ̂  t , 

i=l,2, if 

-l<-p£^ / f(x)dx.4p<l and 

T2!! + T fT|f(x)ldx<sup II . 

Proof. There are fulfilled all the assumptions of 

Theorem and moreover $^ is a X -periodic function. There 

are c l f
c
2 s "R >

 cl < : c2 < cl + *¥ s u c n t n a t ^f^cl^ s 

s^f^ cl +^) <- TPt $ . f ( c 2 ) > T p . So we obtain c^€(clfc2) 

and c^6(c2,c]L + tf) such that $.£.(03) s $f(c4* s 

= fTf (x)dx. 
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Remark. From the Corollary 1 it follows that the e-

qnation 

u"(x) • sin (u2*^ (x)) = f(x) 

possesses an infinite number of T-periodic solutions if and 

only if 

-l-*r| J^f(x)dx<l, f =-±1. 

From the Corollary 2 it follows that the mathematical 

pendulum equation 

u"(x) + sin u(x) = f(x) 

has at l e a s t two d i s t i n c t T-periodic s o l u t i o n s u, , \Xp such 

that 11^(0)1 £ 2 * , 1*1,2 , i f 

- k - p i i f f ( x ) d x £ p < l and T2 + T f I f (x) ldx<ar -2arcs in p. 
J- *Q "0 
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