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HOMEOMORPHISMS OF POWERS OF METRIC SPACES
Véra TRNKOVA

Abstract: We construct a connected metric space X ho-
meomorphic to X3 but mot homeomorphic to .« We prove that
there exists no countable metric space homeomorphic to X
but not to X2.

Key words: Connected metric spaces, powers of metric
spaces.,

Classification: Primary 54B10, 54Gl5

Secondary 54D05, 54E35

In 1973, a metric space X homeomorphic to X3 = XxXxX

but not to X2

= X=X was constructed, see [3]. The construc-
ted space X was a coproduct (= disjoint union as closed-and-
open subsets) of infinitely many metric continua, hence far
from being either countable or connected. In the present pa-
per, we construct a connected metric space X homeomorphic to
X3 but not to Xz and prove that there exists no countable
metric space with this property (although there exists a
countable strongly peracompact space X homeomorphic to X3 but

not to X2, see [ 5]). Some possible strengthenings and gene-

ralizations are sketched in 15. at the end of the paper.

1. ﬁemma. Let Xo, X1 be non empty countable topologi-
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cal spaces. Let X contain two disjoint closed-ami-open
subsets homeomorphic to X, and X, contain two disjoint
closed-and-open subsets homeomorphic to Xo.. Then Xo is ho-
meomorphie to Xy« '

Proef. a) Clearly, both X and X; are infipite. Put
i{k,j1 = 10,1}, Let ’i‘k,l’xk,Z’xk,J"" } be a sequence of
all elements of X,k, xk,n* xk’.l for n4&m. One can find ea-
,81ly disjoint closed-and-open subsets Ag 11 By ; of the
space X such that

4y 1 is homeomorphic to X, and xk,ﬁi ‘k,l'

By,1 is homeomorphic to Xje

Since ‘k,l is homeomorphic to X, there exist disjoint clo-
sed-and-Open subsets Ay 5, B , Of the space & , such that
‘k,2 is homeomorphic to X, and xk,2¢“k,2’
Bk,z is homeomorphic to Xj.
By induction, we construct disjoint closed-and-opem subsets
"k,n’ By n of the space Ay 53 @nd such that ‘k,ngxk’

&Y.
Bk,n XJ and xk,n* ‘k,n' Consequently

0
;n,oli ‘k,n = .

b) Let h, be a homeomorphism of Ao,n onto Bl,n+1
and g, @ homeomorphism of Al,n onto Bo’n+2- Moreover,
denote by ho a homeomorphism of xo onto Bl,l and by g, &

homeomorphism of Xl onto Bo’z. We define
vo = xo\ Ao,l’
v, = x> (Al’lu ho(vo)),

and, by inguction
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Vo = Ao,n\ (Ao,n+1 v gh-l('n—l))’

Yn

Ay > (Al’mlu h (V).
We define A :X,—> X, by

A(x)

]

h,(x) for xeV,,

Ax)

Then A is a homeomorphiam of X, onto\ Xl'

"

g;l(x) for xe g;l('n) .

2. Theorem. Iet n be a mturallnumber, n>2. Let X
be a countable metric spac-e homeomorphic to o= Xx eeuxX
(n-times). Then X is homeomorphic to XZ. )

Proof. If X is finite, then necessarily card Xe 10,1},
hence xzxz. Let us suppose that X is infinite. If X contains
no isolated point, then X is homeomorphic to the ordered spa-
ce of all rational numbers, hence xx? again. If X contains
isolated points, then either it contains precisely one iso-
lated point or it contains infinitely many isolated points.
In the former case, X * ix J VR, where x, is the isolated
point and R is homeomorphic with the space of rational num-
bers. Then, clearly, X.'-‘LX2 again. Finally, let us suppose
that X contains infinitely many isolated points. Then X con-
tains two disjoint closed-and-open subsets homeomorphic to ‘
X=X, namely n"L (X X=iadx oo xiay}) and " (XxX = tayd>=
»+e.x185%), where h is a homeomorphism of X onto Xn and
a;, a, are two distinct isolated points of X. Clearly, X2
contains two disjoint closed-and-open subsets of X. Conse-

quently, we can use the lemma with X, = X, xl = 22._

3. The aim of the rest of the paper is to present a

construction of a connected metric space X homeomorphic to
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X3 but not to 12. The construction is done in the‘category
Wi of all metric spaces of the diameter <1 and all their
contractions, i.e. mappings f£:(X,d) — (X°,d°) such that
a’(£(x),f(y))£d(x,y). Hence, let us present some important
properties of the category M| , first. Isomorphisms of M
are precisely isometric bijectionas. The category M has all
products; the product of a collection {(X ,d ) | e A} is the
space (X,d), X = 1;1’ X, ,4d =°°ssuR dy (, with the usual projec-
tions o :(X,d)—> (X ,d ). We denote it by 11 (X,,d,).
The category IMI has also all coproducts; the coproduct of a
collection {(X ,d )|« € A} is the space (X,d), X = R
x toc}, al(x,0),(y,0) = d(x,y), d((x,0),(y,x?)) =1 for
o *+ o’ , With the coproduct injections b 2(X 04 ) —>
—»> (X,d) sending x¢ X, to (x,x). We denote it by

J&l (X ,d.).

We also can make identifications of points in objects
of Mi. If (X,d) is an object of M| and Rc X=X is given,
then there exists a morphism q:(X,d)—> (X,d) such that q(x)=
= q(y) whenever (x,y)e R and every morphism f of (X,d) in-~
to an arbitrary object with f(x) = f(y) for all (x,y)c R fac-
torizes uniquely through q. The space (i,a) is obtained as
follows., First, denote by qozx¥—> X/E the factor-mapping,
where E is the smallest equivalence containing R, and for
:n:,y¢~:x/E put 4, (x,y) = inf’n§4 d(a,,b ), where the infimum
is taken over all tupples 81,01,8,,b5y...,8,,b, such that
q,(ay) = x, q,(by) =y and q(by) = q(ap,q) for n=l,...,k-1.
Then 4, is a pseudometric on X/E; define a surjective map-
ping p:x/E —>X by p(x) = ply) iff do(x,y) = 0 and, for any
%,7 e X, put d(%X,y) = do(p-l(x),p'l(y)). Then q = q,.p:(X,d)—>
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—> (X,d) has all the required properties. We say that (X,d)
is obtained from (X,d) by the identifications of x with y
for all (x,y)eR.

4. Denote by JL the class of all isometric injections,
An L -chain is every presheaf in IMi over a well-ordered sche-
It
me ({(Xuc,dw)lw , {fac;ac <p
Every Jl-chain has a colimit in M created as follows. De-

) such that every tf is in # .

note by (X,{f %, ) a colimit of the presheaf of the underly-
ing sets and define a metric d on X such that for every x,yec
€ X find an « with x,ye £ (X)) and put d(x,y) = dcc(f;l(x),
gl(y)). Then, clearly, ((X,d),{£}) is a colimit of the gi-
ven M -chain.

If there is no danger of confusion, a space (X,d) will be de-

noted only by X.

Lemma. In M , colimits of Jl-chains commute with fi-

. . . _ B

nite products. More precisely, if P, = ({Xi,me ’{fi,cr,;aca(&)
are M -chains over the same scheme, i=l,...,n, colim 5’1 =

= (X5,4f5 (b, ) and P = (£T7 X €77 £l

’xzw, i"zgﬁéﬁ ))
then

colim P = ( TT X;, 1TT£; 5. ).

Proof is straightforward.

5. We shall use the lemma in the following situation.
We have a metric space Z and an isometric injection h:Z —>
—>23 = 2x2x2 ( x denotes the product in M ). We defi-
ne a presheaf J° over the set N of all non-negative integers
as follows.
X, =2, X =23, n} =n,
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and, by inductiom
= n+l n 3
L1 = g’ hy © = (hn-l) ¢
Clearly, we obtain sn M -chain | P= ({x‘l}n,{hz?nﬁ‘). Put
(X,{h,3) = colim & . Then, by the above lemma, -
X is isometric to x3.
Clearly, if Z is connected, then X is also connected.
In what follows, we construct a connected space Z and
‘
am isometric injection h:Z — 2‘3 such that, for the colimit

space X, we shall be able to prove the non-homeomorphism of
X to Iz.

Observation. If V is an open subset of Z such that

h(V) = V> V<V and for every x€ V there exists d(x)> O such
that dist (x,Z\V) zd(x) and d(x) * min(d(x)),d(x;),d(x;)),

where (xl,xz,x3) = h(x), then h,(V) is an open subset of X.

6. We recall that N denotes the set of all non-nega-
tive integers. Denote bf l' the set of all mappings of N in-
to itself and by O the conmstant zero. We consider the addi-~
tiom on ol given by

(£+g)(n) = £(n)+g(n),
where + on the -righ';. side is the usual addition of numbers.
For F,Gc ll, we put

F+G={f+g| reF,geil.

By [ 4], there exists a set T W\ {0% such that

T=T+ T+ T, Tn(M4T) = 4.

Put S = Tx N, For every s = (f,n) put 8 = £. Since T =T +
+ T+ T, one can £ind a bijection

A:S—>SxSxS
such that, for every secS,
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s = El + 52 + 33,
where (s),8,,8;) = A(s).
For every £e N\ {0% , put
L(f) ={(n,j)|0< j££(n)}.
Since £ + @ , the set L(f) is non empty. For every sec S, de-

fine a bijection

(where (31,52,33) = A(8)) such that

n

Sas(n,.j)
Sbs(n"j)
;oa(n,j) = (n,8;(n) + 85(n) + j) for (n,j)eL(§3).

(n,J) for (n,j)e L(El),

[}

(n,8;(n) + J) for (n,j)e L(3,),

7. Let € be a Cook continuum, i.e, a connected com-
pact metric space such that for every subcontinuum Dc <€ and
every continuous mapping £:D —> ¢ either f is constant or
f(x) = x for all xe D. (A continuum with this property was
constructed by H. Cook in [1].) Let {A |neN3uiB [ke N be
a pairwise disjoint collection of its non-degenerate subcon-

tinua. We may suppose diam A = % for all neN, diam B =
<« o= (k+2)

Choose aneﬁ and bk,l’ bk,2 in B, in the distan-
-(k+2)

ce 2 « Denote by vn the space which we obtain from the
coproduct A, nhlélNBk by the identification of the image of
the coproduct injection of &, with that of b, ; anl the ima -
?
fb ith that of b « To simplify the tation
ge o k’zw k+1,1 plify t notation, we

will suppose A C Voo By c Va and a, = bo 10 P for
9

k,2 = Pk+1,1
all k,neN. Hence diam V; €1, so V; is in M . Denote by VX
the completion of V . Clearly, it is obtained by the adding

/]
of a single point to thJo B c V,» denote it by o .
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8. For every f¢ N'\{Q} and every £ = (n,j)e L(L)
put £ = n. Given fe N\ {0% , we investigate the product
Gn ™M 1) Ler(s)VE » which is only another description of the
space TT (Vn)f(n), more suitable for the manipulation with
coordinates. Denote by V(f) its subspace consisting of all
those points x such that

(c¢) only finitely many coordinates of x are outaide
of ngBk (i.e. in AN {&n}),

() the others ’form a finite subset of" k\{nak'
Moreover, denote by ¢‘(f) the point with all coordinates e-
qual to o . Put V¥ (f) = V(f) u {o(f)% (considered as a sub-

*
)vl )o

space of
P 2 e

Observation. The space V* (f) is connected.

9. Let S,A, @, be as in 6. For every s¢S, with A(s)=
= (31,32,33), define

Yg:V ¥ (8) —> V¥ (31) = V¥ (5,) < V* (53)
such that y (0 (8)) = (o (8), 0(8,), 0’(33)) anm, if x €V(8),
Yalx) = (x,X5,X3) with ar(x;) = ar%w) (x) for all i=1,2,3,
Le L(ii) (where gr, denotes the A-th projection).

Observation. V¥, is an isometric injection which maps

V(8) onto V(&)= V(8,) < V(53).

10, Put Vv =pJ‘.'-."SV(§) (i.e. the underlying set of V is
»\g (V(8) < {8%)). For (x,8) eV put v (x,8) = ((x;,8,),
(x5,8,),(x3,83)), where (s,,s,,8;) = A (s), (x1,%5,%3) =
= Wé(x). Then ¥ is an isometric bijection of V onto V.

Proposition. V is not homeomorphic to Vz.

2

Proof. One can verify easily that V° is isometric teo
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11  V(f)x4in}. Since TN(T + T) = P and every V(f) is
fEeT+T
me N
connected, it is sufficient to prove the following assertiomn.
If V(f) is homeomorphic to V(g), then f = g,
This follows from the fact that, for every fe¢ N\ {0} and
every nc N, the value f(n) is equal to log(cn+1), where c,
is the cardinality of a maximal system J¢ of homeomorphisms
of An into V(f) with the following properties.
(i) If h e %, yeh(A)), then, for any m+n, any sub-
continuum D of Vy such that nn¢D and any continuous mapping
g:D —> V(£) such that ye¢ g(D), g is constant;

(ii) if n,h’e 3€ , then h(ay) = h'(ay).

For, by the properties of the Cook continuum ¢ , hom, is
either constant or £ =n and ho, is the inclusion A,—>
—>V,. If I =m+n, then the value of h o, is equal to
a,, by (i). If Z=nand ho® is constant, then the value
of h o, is equal to ay, by (ii) and the maximality of % .
Hence, the homeomorphisms from ¥ are in one-to-one corres-

pondence with non-empty subsets of the set {1,...,f¢n)}.

11. Denote by J the set of all non-zero integers. Let
us suppose that {Cklk €J} is a system of non-degenerate sub-
continua of the Cook continuum € such that the system
{A |neN} viB|k €Nju{iC |k € D} is pairwise disjoint. We

. _ o=(lk\+
may suppose diam C, = 2 (X1+1) | moose °x,10 °k,2 in C  in
the distance 2~ (IKI*1) p 0.0 by C the space which we obtain
from Aelél‘J Ck by the identification of (the image of the co-
product injection of) c.,2 with 1,1 and Cx,2 with Cx+1,1
for all k € J\{-1}. Clearly, diam C = 1 (a simple counting

of the diameter of C is the reason why zero is omitted in J ,
- 49 -



i.e. we glue C_; immediately with C;). To simplify the no-
tation, we suppose again that Cgc C for all k and c__l,2 =
=11, °k,2 = °k+1,1' Denote by C* a completion of C. It
is obtained by the adding of two points to C, let us denote
them by ¢, and c_ (where ¢, is the limit of the sequence
{ck’li with ¥ — + 00 and c_xwith k—> - 00 ). Denote by W
the subspace of the space C ° consisting of all points x
such that the set of all coordinates of x form a finite sub-
set of C; denote by o, (or ¢_) the point of (C*)$° with
all coordinates equal to c, (or c_, respectively). Put w*=

=Wudo,, 3% Then W* is connected. Now, let
6: Ko i .‘ﬁoJ.L -‘Ko—“>$o
be a bijection. We define an isometric injection
Yy W Wh W WX
by yy (oy) = Coyy o4y 04)y w, (o) = (o, 0, o) and,

for xe W, vw(x) = (xl,xz,x3), where :rn(xi) = Gr'z(n)(x)
for i=1,2,3, n e ¥ . Clearly, Yy maps W onto WxWxW,

12, Denote by Z the space which V(&) is}
. * . o
we obtain from V u Ll WS, where (03)8)
w¥ = w* for all se S, by the
° ‘ Wx{s¥
identifications
- . e
(0(8),8) with (0, ,s) for all se S, QO o
(0_,8) with (0_,8°) for all s,s8€S. °

We may suppose VcZ,, s (W¥<{s})cZ and (0(8),8) = (0,,s),
(0_,8) = (0_,8"). Denote the last point by Q .
Now, we define an isometric injection h of Z into Z3.

We put
p - 50 -



h(x) = y(x) for xeV,
h(w,s) = ((wl,sl),(wz,sz),(w3,s3) for we W¥ , where
(31,32,53) = A(s), (wl,wa,w3) = qr'(w),
(particularly, h(fL) = (£, Q,Q)). One can verify that V

is an open subset of Z.

13. We have constructed a connected space Z and an
isometric injection h:Z — z3. From these data, we construct
an M -chain P as in 5. Denote (X,th }) = colim P . Then,
by 5., X is isometric to X3 and ho(V) is an open subspace

of X.

Proposition. The set h (V) is precisely the set of all
x €X which fulfil the following property (p).

(p) There exists a neighbourhood (" of x such that,
for every subcontinuum D of any continuum of the system
{Ck\k e J3 and every continuous mapping g:D — 0 , g is

constant.

Proof. If xeh,(V), it is sufficient to put o= h (V).
let us suppose that xe X\ ho(V). Find the smallest n such
n
that xeh (X)) and put y = h;l(x). Then ye X, = z3 . Denote
n
by (¥qse-eyy n) its coordinates in 23 . Since v¢ hg(v), at
3
least one of the coordinates is not in V, say Yqe Then eve-

ry neighbourhood of y in X contains a set Ux {y27x>< cee

e -\,y3n'§, where U is a neighbourhood of y, in Z. Since
yy is in ZN\ V, every its neighbourhood contains a homeomor-

phic image of some non-degenerate subcontinuum of some Ck.

14. Proposition. X is not homeomorphic to X2
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Proof. The set of all x eX which fulfil (p) is homeo-
morphic to V. The set of all xst which fulfil (p) is ho-
meomorphic to V<V, But V is not homeomorphic to Vz, by 10.

15. Concluding remarks. One can see that we have con-
structed a connected metric space X isometric to x3 but not
homeomorphic to x2. By a minor modification of the construc-
tion, one can obtain, for every natural number n>3, a con-
nected metric space X isometric to x® but not homeomorphic
to Xk, kx=2,...,n=1. Moreover, any metric space of the diame-
ter 41 can be embedded by an isometric injection emto a
closed subspace of X with this property. To obtain this, it
is sufficient to embed it in a connected metric space Y of
the diameter < 1, to choose y €Y and to replace the space C
in the above construction by the space,CxY amd the points

c,, ¢_ by the points (c,,y), (c_,y).

16. Open problems. Let us denote, for shortness, by T
the class of all topological spaces X homeomorphic to 13 but
not to 1(2 By the presented construction, T contains a con-
nected metrizable space. On the other hand, answers to the
following questioms are still umknown (though, by [2], there
exist two non-homeomorphic metric continua with homeomorphic
squares),

a) Does T contain a compact Hausdorff (or even metriz-
able) connected space ? (It contains a compact metrizable
space, by [61.)

b) Does T contain at least a separable connected met-
rizable space 7
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