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HIGHER ORDER NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
IN UNBOUNDED DOMAINS OF R"
Daniela GIACHETTI, Elvira MASCOLO, Rosanna SCHIANCHI

Abstract: « The Dirichlet problem for a certain nonline-
ar partial differential equation on an unbounded domain is
studied. The existence of a weak solution is proved by means
of the theory of monotone operators.

Key words: Nonlinear differential equation, unbounded
domain.

Classification: 35J60, 4THOS

Introduction. Our purpose in the present short paper
is to describe an application of some general techniques in
nonlinear functional eanalysis to the study of a class of hig-
her order nonlinear boundary value problems.

We consider the problem in {1
o { Au =‘°Liz-‘,_m (-l)m 3% aw(x,u,..., 3™)+£(u) = 0,

u 03P,

where:
(i) Q is an unbounded open set in R® with the cone property;
(ii) for each «e Ny, lwl< m

m—lu )

a (x,u,..., 'amu)=aél)(x,u,..., amu)#aéz)(x,u,..., 3 ’

satisfies the Carathéodory conditions and some Nemytskii hy-
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potheses on polynomial growth (assumption K, in Sec. 2);
(iii) f£(u) is a nonlinear perturbation whose behaviour is
described by a suitable hypothesis (assumption K5 in Sec.2);
(iv) ﬁ’:‘p(ﬂ) are weighted Sobolev spaces defined as the com-
pletion of 9 (Q) with respect to the norm

fal =( ol m f‘; [ ?g) | o“u(x)|P an) 7P,

where ¢(x) is a continuous function such that inf @(x)>0 and
@P(x)- +o as Ix|—> +® , satisfying assumption H; in Sec.
1.

Many authors (see for instance [1],[41),[7],[13]) have
studied similar problems, some in bounded open subsets of Rn,
others in unbounded ones. In both cases their existence theo-
rems have been proved either by assuming coercivity (see, for
instance, [1],1{13]) or by giving a coercivity condition which
involves all derivatives (assumption A in [7]). In order to
get free from the hypothesis on the lower order derivatives,
F. Browder, for example, imposed conditions upon the bounded-
ness of the domain and the smoothness of its boundary to ma-
ke the application of the Sobolev imbedding theorems possib-
le.

Here, by assuming & coercivity condition depending only
on the highest order derivatives (assumption K3 in Sec. 2),
we prove that there exists at least one solution of the prob-
lem (1) in ﬁ:vp(n) with 8 <= %, pz2.

The use of these spaces allows us to apply some conti-
nuous and compact imbedding theorems for unbounded domeins
which are proved in {11,12]1,115], and to specify the asymp-
totic behaviour of the solution.
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The proof of the existence theorem is obtained by us-
ing & well-known result of H. Brezis (see [5]) in the fra-
mework of the theory of monotone operators.

In Sec. 1 we recall the spaces ﬁ:»l’cm and some relat-
ed results.

In Sec. 2 we formulate the hypotheses of the existence '
theorem and state the theorem itself, which is proved in
Sec. 3.

Finally, Sec. 4 is devoted to an application of the a-
bove theorem to a problem of the following type:

{ £%u- Au+r1(u)f-rz(x!n,yad u)=0 in Q. ,

ueﬁs’z(n).

1. Notations and preliminaries. Let {). be an open set
in R", n22, with boundary 80 and *=(cCy,e.., ;) an
ordered n-tuple of non negative integers; we set:

<
n

ol <«
lool = atye.. 4ot , 9""-:8,‘;... a‘m x% u;i...xn"ia:xen.

and, if |xl=m, 3% = 3% .

Let So(x) be a continuous function on ). with i},’_f?(x) >
> 0 and such that ga(x)---) +o0 @8 |x|—>+00 .

Definition 1.,1. Let k&N, pe[l,+w]1, sc R . We de-
note by Uf'l’(m the space of distributions u on . such that

SP(z) | 9%u(x)|P ax<+ @
lacl%h J.; ¢

normed by
@) uby =L 2 L6 %P | 9% uolP e

As usual, we set u:lp(n)ﬂre(n) and Uf’zm)z‘):(n)o
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Definition 1.2. Let ke N, pell,+[, s 6 R , We de-
note by ﬁlj'f’m) the completion of (D) with respect to the
norm (1.1),

Definition 1.3. Let keN, pell,+wl, s ¢ R . We de-
note by U;k'p () the space of distributions u on L which are
equal to a finite sum of derivativea or order £k of func-

tions belonging to Ug'p(D.) and normed by

. ) 1/p
ull_y o p=inf( o g Ig,l o,8,p)

where the infimum is taken over all representations of u of
= P
the form u-uéha“’g& )y B € Ug’ o).
We assume that:
(H)) @ €C™Q) and for every r ¢ R and «ce Ng there exists
ace R, such that
| ngor(x) lze( So(x))r for every xe Q.

It is not difficult to prove that the function ga(x)=(1+
+ lx\2)1/2 satisfies property H;.

Under assumption Hl and if Q) has the cone property, con-
tinuous and compact imbedding theorems have been proved in
{11,123,015]; it is also proved that there is a topological
isomorphiem of U::’p’ (Q2) onto the topological dual (6§'p(ﬂ-))'
of the space l‘}g’p(ﬂ).

To write nonlinear partial differential operators in a
convenient form, we introduce the vector space R k whose
elements are §,=<{§_ /lx!% k} and divide such §x into two
parts §,=(§,7) where n*—-inp/'!(ﬂé k-1% is the lower order
part of ¢, and § = {§, /1! =k} is the part of € corres-
ponding to the k-th derivatives.

Let us now recall some definitions which will be useful
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in the sequel. Let U and V be two Banach spaces; a map f:
tU—>V is called compact if it is continuous and maps boun-
ded sets of U into relatively compact sets of V; f is called
(sequentially) completely continuous if it maps weakly con-
vergent sequences into strong convergent ones. If £ is line-'
ar and U is reflexive, compactness and complete continuity
are equivalent properties. If X is a topological vector spa-
ce, X’ denotes its topological dual and {+ ,+) the canoni=-

cal pairing.

2, Asgsumptions eand main result. We consider the follow-

ing problem on L

I
{ = B D' 9% e (0,000, 9B (2)50,
(2.1)

ue ﬁm,p(n)

where the functions aao(x,g)—a(l)(x,g)w(m(x,rl) satisfy the
Carathéodory conditions and the following properties:

( 1) = /p’
(xy) lay (x, § ) | €8, (x)+cy 7 |§3.\ PP
| ao(oa) (x,7 )] £ h g (x)+e, ‘P‘Z’;"‘"’ .5 P/P,
where g&,hdr:U:'p,(m and ¢y,c, € R,, p22.
We &lso assume that
(K,) 8<-n/p;
(K3) there exists a positive constant ¢ >0 and h(x) e
€ U:’p(ﬂ.) such that for all x ¢ & and for §'m=(§,7g)e
8
s R D
a(l)
om B (X §m) B €I §1P = h(x);
8

s
(K4) for each x in ) and each pair (gm,gm) e RE<RD
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the following inequality holds:

Lol (x, g0~ (x, 6701 L[§, - §,120;

<1 mv

(KS) f is an increasing function and f£(0)=0; moreover
I£(A ) £y (A)1L(t)], for every t,A e R withy:
:R =R,

V() Z ey tiP ™ >0

Definition 2.1. We say that u is a solution of the pro-
blem (2.1) if u ﬁ:"pm) and {Bu,v) = O for every ve fJ':'p(_(L).

We are now able to state the following theorem:

Theorem 2.1. Under assumptions Hl,Kl-K5, the problem

3. Proof of Theorem 2.1. The problem (2.1) is equivalent

to the following one:

EBgu= 0°P(x) Eu=0,
(3.1) o

ue U:'p .
It ie not difficult to prove that

(1 2
Egu=A, )+B‘u+A§ dus e *Pr(u),
with
Q)
AG

we = ) 0% 9% x,..., 5%,

lec) o~
Bgu= -lcuzém(-l) {5%& Cocpp @ !s(" °P of ag')(x,...,a ),

A:z)\ﬂ = (-1)‘*‘ ?sD a""a(Z)(x’”.' am-]“)‘

lale mv

Theorem 3.1. Under assumptions 1(1,1(2,1(4 and H,, the ope-
rator

ue ﬁ:"’(n) — Agl)um’uﬂgz ha suly’ Pla)
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is pseudomonotone.

Proof. We first prove that the operator ue f)‘:'p(ﬂ-) —>
—_> Agl)ue U::'p’(o.) is continuous and monotone. Assumption
K, implies the monotonicity property. Notice that, for each

*K e N’; such that [w! 4 m, we have

(53]
ue&':'p(n) <, (Wyeee, @) e u:'Pm)_‘E‘_,a(l)(,m, , 9™u)e

e u:.p‘ ) LN @ 8P (x) all) (Xyeee,d™)e US:%(Q) é,u‘_’;P'm)
aw

— 806[ ? Bp(x) a;l) (x, ccey 8%)] eU::’.p’(‘Q.),

where 4,f,i and 3% are continuous by some of the imbedding
theorems proved in [1J,110] and[14]. The continuity and the
boundedness of A;l), under assumption K;, follow from the
standard theorems on Nemytskii operators (see [1],[15]). Now
the operator ue fl:'p(n)ﬁBsué U;"pl (Q) is compact; indeed

we have

. d Ac
ue BP©) %5 (a,..., 5% & ar UOP() 25 o1 (x,..., 0 u)e

P - ’
e @) = 3P a{Pix,...,0 ™ e BB @

L,k @ 8P (x) of aé‘l)(x,..., ™) e U::’p'(Q.),
where, since 3| 4 m-1, 3P is compact (see Theorem 5.2 in

£11); 4 and Aél) are continuous as tefore, while ¢ is contimu-

ous as it is the conjugate of the mapping
oo, P -3 8P om, P
ve 03P @) —> (P P)ve Tg:8 @),

which turns out to be continuous (see imbedding theorems in
[1]) and [14]). Finally the operator ue f’:'p(ﬂ.)——-)A(z)u e

3 U:':’P'(n) is completely continuous since for every lowl < m

- 589 -



we have

(2)
we P 2y (x,...,0 " ) e or ugl;gs(mi:c., a'?) (x,...

’ oc - -
cees am‘lu)e U:sge(m _9_> a” 3;2) (x,.oﬁ’am lu)e U;;:g'(m

/
—f—->()oap(x) 3“&00(1,...,8“'1\1)60_’:’9 )
where d is a compact mapping, Aa(f), a°°, f are continuous as
before.

Now the theorem follows directly by the definition of the

pseudomonotone operator (see [51).
Now let us set
t
F(t)= Io £, (x)at and Dip)={ue 03°Pw): fn F(u(x))ax <+ 003«

By means of K5 it is easy to show that the functional
+00 if ue TP\ D),
@(u) = { .
‘ an(‘u(x))dx, fue D(g),
is convex and D(?) is a linear subspace of tolg'p(n.).

Theorem 3.2. Under assumptions Hl,xl,Kz,K3 and K5 we

have
4 Agl)uﬂisu'mgz’u,u) + @ (u) .o
Bul m,s,p
as lull —> + 0

m,8,p
Proof: For each ueﬁ:'p(ﬂ.), from the hypothesis Ky and
the Ehrling inequality (see [15]) we get

.30 alVuuwr= = [ 0%Pxelt) (x,u,...,8%) 5% ax
p - o p -
Zco“u“m,a,p eo\‘%‘m\ia “‘o,s,p uh“o,s,p
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- eiull? - c(e) lu iP -fin i

P
Zeoﬁu" m,8,p m,8,p 0,8,p

0,8,p

=(cy- €) Hull npl,a,p - c(e) ull g,e,p - c4e

Furthermore, assumptions HI’K:L and the Schwarz-HSlder and
Ehrling inequalities imply that

8 (1)
(3.4) HBs“'“)Iﬁz = 2-(3 Sc[&d'fn. @ p(x)‘a& (x,

12m p<c FZ

Uyeee, @) 18%uldx ¢ & = 8P (x)

i m R<w d%_'.[icocf&fio_ @

X p
Ugoc’(x)l+‘wz‘_,_-m\67u‘ﬂ3 167 ulax

, J§

/"E;m E«, 62'2-(5 %Upsr L8 N oq,p0 107w Voye,p *

= ¥ "
+ m&»mna ull 0,8,p i 8% u "o,s,pJécs la “m,a,p +
+ csllul‘g:i’p [e\lullm’a’p+c(e) ““‘io,s,p] .

Likewise it can be proved that

W) ' -1

3.5) 1< uudleeqllully o oregllully o S Tellullf7g «

+c(e) flull g:i,p 1,

where C4reeesCqg OTE positive constants independent of u. Fi-
nally, by virtue of the Schwarz-HSlder inequality and assum-

ption K2 we have
40x)
(3.6)  @(ws= &@”(x)(fo £(t)at)axz ey f_ngo °P(x)

(0 c
L TP 1% ge) ax = 23— 5P (x) lu(x) | P** ax
@
0 ptw "0

pp | A hrew e
zegl j:Q go(x)m < ax)e (.[('l goap(x)iu(x)lp) fid
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n
Zcm(_fn @"(x)lu(x)\pdx)% = ¢ Hall g:::p ’

where o =(p+w)/p, <= o /(x-1) and €gs¢y are positive
constants. Now (3.2) is an easy consequence of (3.3),(3.4),
(3.5) ana (3.6).

Proof of Theorem 2.1: in virtue of Theorems 3.1 and
3.2 we may apply Corollary 30 of (5] and state that there
exists u e D(9) such that

<aBup uralPu, voud 2 g(w)- ¢ (v), Vve P,

The proof is completed by means of known procedures (see e.g.
Theorem 3.1 of [3]) which allow to show that u is also a so-

lution of the problem (3.1).

Remark. ILet us observe that a weaker Nemytskii condi-
tion, such as in [71] and in 113], allows us to prove Theo-

rem 3.1 but it fails in the proof of coercivity.

4, Example. We consider the problem on (L
(4.1) Eu= A2y A w+f(x,u,grad u)=0,
{ ue ﬁf(ﬂ).
It is equivalent to
Egu= Qza(x) [ A% Aust(x,u,grad w)l = 0,
{ ue &im).

We set f(x,u,grad u)sf,(u)+f,(x,u,grad u).
Now B. my be written in the form
with

E.u-Asnu%B.\ﬁliz dur @ z'fl (u),
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with
.. 2 28
Agu= A 8Av)- 4254 Qxi(go 3xi“)-

n
Byu= .=, (a‘i @2°)( axiu)-Z(grad Sozs,gradA u)-

-(4 %) (Aw),

Asn- @ufz(x,u,grad u).

By supposing that £ is a real function defined in Q.= R x
» RP, we shall also assume that the functions £, and £,
satisfy the properties

(et1) £y is increasing, £,(0)=0,
12, (A 8)) £ ¥ (AL (L)) for every A ,tc R,
vith 3 : R— R,
£, ()= clt1*¢, w> o;
(o0y) £, satisfies the Carathéodory conditions and
1£5(x,t, €)1 £h(x)+by It] +b, 1§l
with he 8992 ana by,b, ¢ R, -

It is easy to verify that the operator E satisfies as-
sumptions Kl'K3'K4 and Ks; then Theorem 2.1 implies that the
problem (4.1) has at least one solution.

We shall conclude this section by giving some examples of £,

and f,: The functions t2n+1,n eNeand t1t1° | w e R, , sa-
tisfy condition o£y. The functions g(x)+YI1tI%IgIP , 0 <,

(5< 1 and g(x)+arctg t+arctg lgl where g¢ ﬁ:'z(n), satisfy

condition “2'
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