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FINITE-SAMPLE COMPARISON OF L-ESTIMATORS OF LOCATION
Jana JURECKOVA

Abstract: Let xl,...,xn be a random sample from a po-

pulation with the density f(x-8) such that f is symmetric
and positive. The efficiency of estimator Tn of © based on

Xy5000,X, with respect to extreme deviations from 6 is es-
tablished. The sample mean in is then compared with other L~

estimators with respect to this efficiency. The comparison
among others yields a surgrising result that, from this point
of view, the sample mean is more efficient than the sample
median even for the double-exponential and logistic distribu-
tions, On the other hand, each trimming brings an improvement
with respect to X, in the case of Cauchy distribution.

Key words: Tails of a probability distribution, L-esti-
mator, efficiency of an estimator. ’

AMS: 62F10, 62G05

1. Introductiom. Let X;,X;,... be a sequence of inde-
pendent random variables, identically distributed according
to an absolutely continuous distribution function F(x-8) with
positive density f£(x-0) such that f(-x) = f(x), xe RL. For
any fixed n, let T, = Tn(xl,...,lgl) be an estimator of 6 ba-
sed on xl,...,xn. Different measures of performance of Tn
have been suggested and investigated. Besides the classical
mean-aquare-error approach, the probability
(1.1) Pg(iT,-01>a)
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of the absolute error of the estimator exceeding a fixed num-
ber a>0, or the relative measure

(1.2) max{Py (T, < 0-a), P (2, > O+a)}

have been considered in several contexts. For instance, Huber
L 4) has shown that the I—osthnt& is the translatiom equi-
variant estimator which minimizes the inaccuracy (1.2) for
any finite n.

If the sequence {T,} is consistent for 9, the inaccurs-
ey (1.1) tends to O u; n—so , Bahadur ([11,121]) proposed

.3 " us{-1 farin,-el>a) =¥

for a fixed a, a>0, as a measure of asymptotic performance
of {rh}, if the limit exists. Behadur [1] and Fu [3)gave an
upper bound for ¢* for consistent sequences of estimators.
Sievers [8) evaluated the limits e* and their upper bounds
for several estimators and several distribution lhape;. From
this point of view, he found the sample median less efficient
than the ssmple mean not only for normal but also for logis-
tic distribution. He observed a similar feature even in the
case of doudble-exponential distribution unless the values a
were small.

Juroékov‘d 5] considered the measure of performance
(1.1) locally for small values & and n fixed., She found, for
symmetric and unimodal populations, the maximum likelihood
estimator '!: locally efficient in the sense that, for any ot-
her median unbiased estimator T, there exists an a,> 0 such
that ‘

Po(12] -81>a) £ Py(IT, -0|>a) for O<a<a .
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She has also suggested an L-estimator (linear combination
of order statistics) which has good local properties.
Generally, there is no estimator which minimizes (1.1)
for all a >0, If we wish to find estimators which are not
too sensitive to the gross-errors, we feel that the local as-
pect is unappi'opriate. Also, not any fixed value a seems to
be reasonably preferable. On the other hand, if we want to
be secure against the extreme deviations of Tn from the true
paremeter value, we may consider the inaccuracy (1.1) asymp-
totically as a —> o0 and n is fixed. The inaccuracy (1l.1l)
will tend to O as a —» c© for any reasonable estiﬁator;

thus, we shall consider
: 1
(1.4) Q‘:EI;I‘I;O{- O Ln PG( \Tn—e]7 a)}

where q(a) is a proper measure of the tails of f, being defi-~
ned below, as a measure of performance of Ty if the limit
exists.

Considering the L-estimators from this point of view,
we obtain results which may be surprising but which are con-
sistent with Sievers’ results. More precisely, we shall show
that, for any distribution with the tails of the form q(a) =
= b.a"; b>0, r=>1 (it involves normal, logistic and double-
exponential distributions), the sample mean is more efficient
than any other L-estimator which puts weights O on the extre-
me observations. The situation is similar even for O<r<1
but then we are able to find the sample mean more efficient
only for n up to some value n

o
On the other hand, for Cauchy distribution which is ty-

=n,(r).
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pically heavy-tailed (q(a) =2n a), any estimator which
puts zero weights on the extreme obaervation-s is undisput-
ably better than the sample mean. The situation is not yet
clear for slightly less heavy-tailed distributions with
q(a) =m.£n a (e.g. t-distribution with m degrees of free-
dom).

2. Bounds for efficiency of an L-estimator with respect

to extreme deviations

Definition 2.1. Let f be any symmetric density such
that £(x)>0, x¢ R'. We shall call any positive function
q(a), a>0, such that q(a)?c0 as a—> 00 and that

s 1
(2.1) a,l—l;-ao{ 10} ,enh(‘r’a’ £(x) dxt =1

the logarithmic measure of tails of the distribution with
the density f.

Definition 2.2. Let X;,X5,... be a sequence of inde-
pendent random variables, identically distributed according
to a density f(x-6), Gekl, where f£(-x) = £(x)> 0, x€ Rl,
with the logarithmic measure of tails q(a). Let T = 'rn(xl,...
eeesXy) and T = T (X;,...,X) be two translation equivariant
estimators of 6 based on xl,....xn. We say that ']:n is more
efficient than Tr: with respect to extreme deviations (short-
}y T, is more efficient than T_) if it holds

Us {- <fay 20 Pg(1T,1>a)3 2

(2.2) Ao

Za’ﬁi{ - —q%ﬂ' £n Po(l’l‘,;ba)}
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where the probability Py corresponds to @ = O.

In the subsequent text, we shall be interested in com-
parison of the sample mean l-% with other lL-estimators with
respect to Definition 2.2. Let us remind that Tn is called

an IL-estimator of 8 if it has the form

"
(i)
(2.3) T, E, e

where )g(‘l)é cee 1‘-.]!.,‘1“) are the order statistics corresponding
n

to Xl,...,Xn and ciZ O, ci= en_i+1' i'l,...,n, and ‘;?1 013 1.

The following theorem provides lower and upper bounds for

the efficiency of an L-estimator.

Theorem 2.1. Let xl,xz,... be a sequence of indepen-
dent random variables, identically distributed according to
a positive density f£(x-0) such that f is symmetric and has
logarithmic measure of tails q(a). Let T, = 1‘,%4 ey X‘(‘“ be an
L-estimator of © based on Xj,e..,X . Put c = en+1® O and as-
sume that ¢;= ¢, ;.= O for i=0,1,...,k where 0£k< zn' Then,
it holds for any O¢ R

£n Po(|T, -81>a)
k+1<24m { - ol Tp01> }s
@ —roo q(a)
(2.4)
Ln P.(|T =61
o1 (- 22 %0ty ")} n-k.
& -ro0 q(a)

Proof. Noting that 'l:n is translation equivariant, we
may put 6 = O without loss of generality. We have

Po(IT,|>a) = Po(T,> a) + Py(T <~a) £

£ By (x{™ ) > a) + P V< oa) =
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)
. 2n (n;l) f tE(1-¢)2"K"1 442 z'k(kfl)[ 2(1-F(a))) ¥*1
[/

(F is the distribution function corresponding to f), so that

{- Zn PO(ITEI> a)} >
[T q(a)
-k, n
2 ) k+1 2(1-7(
> lim {_ £n[277(y,4)] _ (k+1) Znl2( a))] I
a> oo q(a) q(a)

Considering the third inequality in (2.4), we have
Po(iT,1>a)2 po(x“,"*l’> a) + PO(X,(:"k)< -a) =
-F@)
= 2n(%h) f Pkl )k gt >
0

z 271 (D) (p(a))¥[2(1-F(a))) X

80 that
—_ n P.(|T, i>a)
ii= { - 0 n <
a/-wo{ q(a) }

e (lTEIE]  xgn P (k) £n[20-PGa)] )
& —yo0 q(a) q(a) q(a)

=

n-k.

Corollary 2.1. Let ’in be the sample median based on
’1;...,&“. Then, under the assumptions of Theorem 2.1,

2.5 Beun {_ An Pe”ﬁ'eb‘) }_,;
=] q(a)
£n P(| X -6|>a)
< iim {- 2 0‘5-‘ a}yég-t'lforneven,
O G0 q(a)
ona ,
26y 1im [ {n Pe(lI_‘;Oba)

aln () } = 35-}- for n odd.
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3. Comparison of the sample mean with other l~-estima-

—_ 1 &
tors. Let X, =& 54 X; be the sample mean based on
X)seeesXy. It follows from Theorem 2.1 that

An Pg(1 X -0 1>a)
14 1lim - — =
w:;?v{ q(a) }
(3.1)
21m {- ,an’e(\x‘_‘-eba)}é .
) q(a)

We shall show that the upper bound in (3.1) is attained for
the distributions with q(a) = b a¥, b>0, r>1, for any posi-
tive integer n. It further implies that, for such distribu-
tions, X is more efficient than any trimmed L-estimator.

Theorem 3.1. ILet xl""'xn be a random sample from a
distribution with positive density f£(x-8) such that f£(-x)=f(x),
xe R end q(a)=b ar, b>0, rZ1, Then

Zn P (X -8l >a)
(3.2) rim (- 22 Pl %0 > }s n.
@0 q(a)

holds for GeRl and for any positive integer n.

The theorem will be proved with the aid'of the following
lemma.

lemma 3.1, Let Xy,...,X be a sample from a distribu~-
tion with the density f£(x-6) where f is positive and symmet-
ric and has logarithmic measure of tails q(a). Let Tn be any

translation equivariant estimator of © and dn any positive
number such that

(3.3) Eylexp {dn QUITy1) < oo .
Then
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£n Py (17, -0] >a)
3.4) Ln {- —© il }z

ay® q(a)

holds for ©c R,

Proof of Lemma 3,1. Agin, we may put & = O, Markov’s
inequality implies
Bylexp {a, q(I T, i)}]

(3.5) P, (T 1>a)<
G expia, q(a)}
so that
{- An Po(i'rnl>a)}7 3 {- £n Eglexpia, q(IT)) )}J+
a>o0 q(a) a >0 q(a)

+ 4] = &

Proof of Theorem 3.1. Let q(a) =Dd ar, b>0, rZ1. Then
to any €, 0 < € <1, there exists Ke > 0 such that, for all
azZK,

(3.6) 1~ exp{-(1- §)ba"} £ 2F(a)~1£ 1- expf-(1+ Hva"} .

Let L be the largest number of the interval [O,Ke,] satisfy-
ing

(3.7 2 F(L)-1 = 1- exp{-(1- )b L7 §.

We could easily see that such number always exists. Consider
the distribution function

0 ces x40
1l - exp {-(1 - g)b xr} eoe Le< X
Then (3.6) and (3.7) imply that Gs(x) is continuous and that

(3.9) 2 F(x) - 12 Os(x) for x>0,
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Put 4, = (1- £)n. Then, using HBlder's inequality, we
get

a

(3.0)  Eqlexpidy a(iX,1)3] £ EylexpiQ1- )b =, 1X|7}] =
= (K, expi(1- €)b | X,|7))?

and we get from (3.6) and (3.9) by integration by parts that

Eqlexp{(1- )biX, T3¢ f:exp{u- £)b X446 (x) =

L
Gay =2 ®exp{(1- €)b FIaF(x) +
0
+bra-§ fL°° expi- b X ax <.
€
Thus, it follows from Lemma 3.1 that

£n P, |
(3.12)  ua {- - °”i‘i>°)}z

[ ) q(a)

(1-¢)n

holds for any €, O < € < 1; this implies (3.2).

Remark 1. The set of probability distributions with the
tails of the form q(a) = b a’; b>0, rZ1, contains among ot-
hers normal, logistic and double exponential distributioms.

Corollary 3.1. Let xl,...,xn be a sample from any dis-
tribution with a positive density f£(x-@) such that f is sym-

metric and has logarithmic measure of tails gq(a) = b ar; >0,
r~ 1, Then, for any positiv'e integer n, the sample mean _X-h is
more efficient than any L-estimator which puts zero weights on
x‘()l) and x‘(ln). ‘

Theorem 3.2. Let X;,X,,... be a sequence of independent
random variables, identically distributed according to a den-
sity f(x-6) such that £(-x) = £(x) >0, x¢& R' am which has lo-
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garithmic measure of tails q(a) = Db ar; b>0, O<r<l. Let
T(k) be an L-estimat. T(k) = % c. (1) with c;= ¢ =0
n ¢ 8n imator, Tp™" = 2 ¢ X, i %n-in1
for i=0,1,...,k, where c,= ¢, = O and 1£ k<§. Then X, is mo-

re efficient than T\5) if it holds
(3.12) n(l—nr"l)< k<%-

Proof. Let q(a) = Db ar, b>0, O<r<l, Then, to any ¢ >
>0, there exists K >0 such that (3.6) holds for all aZ K. .
Let L; be the largest number of [0,Ké] satisfying (3.7). Then

(3.13) 2 F(x) = 17 G, (x)

holds for x>0 where G (x) is defined by (3.8) with K; , Lg
replaced by K. , Lg , respectively. Put 4, = (1- € )n*. Then,
we get using c,-inequality (see Loeve [7]) that

3109 EyLexpid, q(1X,1)3] < Eo[exp{(l- e)bé: lxil Til=
) = (Bylexpi(l- e)bix,173])"

and it follows from (3.13)

{(1- e)bix, T332 w {(1- g )b xF}dG_(x) =
Eo[exp - 1 ] _f(; expi(l-g)b x e (x
7 ) )
=2 ® expi(1- e)b x"}aF(x) + (1- §br [ expi- b o f 1
0 o4 H
dx < <«

and we get by Lemma 3.1 that

£Zn Pg(1X -6l >a)
(3.15) lim 4~ ol % - }zn" for 6 R
a >0 q(a)

and this together with Theorem 2.1 implies the proposition
of the theorem.
Remark 2. The method of Theorems 2.1 and 3.1 does not
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provide a comparison of X, aml other L-estimators based on
the sample of size n from a distribution with the tails of
the type g(a) = m+£Zn a, m>1, m integer (for imstance, it
could be easily found that t-distribution with m degrees of
freedom belongs to this type). On the other hand, if X;,...
...,& is a sample from Cauchy distribution which corresponds
to q(a) =2n a, then X is also distributed according to the
same Cauchy distribution, so that

li-{- £n Pe(l‘ljc_n-eb n)} .

o> q(a)

holds for & exl in this case and Theorem 2.1 implies that any
L-estimator which puts zero weights on X,‘ll) and X‘(‘n) is more
efficient than X .
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