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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20,3 (1979)

ON DOMINATION PROBLEM IN' BANACH ALGEBRAS
Viadimir MULLER

Abstract: We give an example of a commutative Banach
algebra A with elements u,v,we A such that juxl&lvxl + | wx|
for every xe A and there exists no commutative Banach algebra
B containing A as a subalgebra and elements b,c &€ B such that
w = bv + cw. This gives the negative answer to the problem of
Zelazko (4],

Key words: Banach algebras, ideals,
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Introduction. Let A be a unital commutative complex Ba-
nach algebra, let u,vy,cee,vy (lén < c ) be elements of A.

As in [4] we say that u is dgminated by elements vy,...,v,
if there exists a constant k2 0 such that |luxi4%k -L’% lvixl
for every xcA.

Let A, B be unital commutative complex Banach algebras. We
say that B is an isometric extension of A if there exists a
unit preserving isometric isomorphism from A into B. In this
case we consider A as a subalgebra of B and write AcB.

Let AcB, u,vy,...,V € A. Let u S,igi,, b;v; for some b; € B.
Then jux| ‘i%1 byl 1vixlick '2.%1 | vix| for each x¢A, where

k = max (ibyl,«.c,Ibyl). So u is dominated by the elements

VyseeosVpe
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In [4] (Problem 9), the question was raised whether the
converse statement is true. More precisely:
Let u,vy,...,V € A, let u be dominated by V1seees¥pye Does it
follow that in some isometric extension B oA there are ele-
ments by,...,b, such that u =;:§4 b;v; 7 The answer is posi-
tive for n = 1 ([1]) and also for arbitrary n in special Ba-~
nach algebras ([5]). In the present paper we give an example
that this is not true for n = 2 (and of course for nZ2) in

general Banach algebras.

Lemma., There exists a unital commutative complex Banach
algebra A satisfying the following conditions:
1) There are (distinct) elements u, v, w, a; (i,j = 0,1,2,...)

in A generating A.

2) u =v-=w =uv=uw=vv=0,aijau=0foreveryi, Jy

3) 8559 T8, 57 Y 8y 51" (i,§z1)
85 o% =853 ¥ (iz1)
a5 ¥ = 8 ;1" (iz1)
4) laijl = 2"("‘*'].)2 (i,§jzo0), lao,oui =1

5) u is dominated by v, w.

Construction: Let S be the free commutative semigroup

with unit 1 and zero element O (0s = O for each 8€ S) and with
2

generators u’, v’, vr',a:.:‘,j (i, = 0,1,2,...) satisfying u’c =

= v'2 = "2 suv =uw =yw = o, ai'jak‘m =0 (i,j,k,m =
0,1,2,...). Put iu’l =lv’l={w’l=1,ia/:] = lajmul=
J i
-(i+§)2

\aijv\ = Iaijw\ =2

Let B be the ,81 algebra over semigroup S with this norm,

for every i, jzO.
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i.e. B is formed by formal linear combinations
td , . w .
1) x = ]to-rﬂ,lu +.12v +).3w +%32=10 ‘a'ijaij"

2 L), 2 (@ S (3
+i,§a ®ij 8 ti ,7%0 3158 Jv +4,32:-o *ij e‘i.]
where A,,¢.., 3.3, 'a‘ij’ i (x =1,2,3, i,§j = 0,1,...) are

complex numbers and

. 2 2 - a5
Ixl = 2, Iagl +;Fp 144412 *

3 20
(k) ,=(i+ )2
+ h24 o%=0|(tb 12 Ve w.

Clearly B with this norm is a unital commutative Banach al-

gebra. Let Ic B be the closed ideal generated by elements

aiju - 81-1 A 1 ,5-1" ‘(1,§21),
a5 ot - i-l oV “(iz1) and a J - a, .]-1 T (jz1).
DenoteA-BlI u=zu +I,v=v +I,w=w +1I, 855 =

= alj + I (i,j =0,1,...). We prove that A satisfies all the
conditions required.
Conditions 1), 2) and 3) are trivial,

Let us notice that if xe¢ B, x has the form (1), then

3 2 Y4
- = -(i+3) (1)
(2) Ix+ 11, = = 12, *«;,S:omij‘z SR P

. (1) 2) (3) ‘
B 02 lefPalpt e @] i e eP)ael s
3
+ va.ju - val_l .) - vag 5%l ‘I =, Zp 1Az +
@ o0
-(4+§)2 (1) (2)
*1.2 m‘i‘]\z 4,;;2::0 '(“’1.] a4 * *i-1,5%-1,5

* G“i,j—l’i,j-l'h .

(Here we put ay, = ak'm = 0 for min (k,m)<0.)
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From formula (2), the condition 4) immediately follows.
Further, it holds

y2
(3 laggul = 227G (4,520
la. wl = 2=(*+9)2 (120, §21)
ij
)2
lay jul = 2=(1+3)° (351, jz0)
2
|ai'°v] = Iai+1'°u\ = 27T 55 )
CRYA
lag, ) = lag suqul = 273" (520),

It remains to prove the condition 5). Let xe¢ B have the form
(1), y = x + Ic A, Then by (2),(3)
. °0
lyu pl=lxu + 1], = 12 u” + 4'4?‘.;0%
) (2
=-(i+j)
’i’,%l) \hij|2 ’

o0
lyvlg = lav® + Tly = 1Av" +; 2 A0 o Il = lag+

13%43% -O-IlA = A+

0 o 12 @ : 2
=(i+J) -(i+1)
415 Ty 15127000 e 1Ay 2 ,
lywiy = fxw” + Il = 12w’ + %,:?:o‘z‘ijai:j" + Il = ia,l+
® Y . 2
~(i+§) 2 -(j+1)
% 50 | Hyy2 *5%0 1,512 :

From this immediately follows lyul< lyv] + |yw) for every

yeA, hence u is dominated by v, w. Notg that u és not domi-
=1€  =(i+1)¢ _ J2i+l

nated by v. It is Iai’oulllai'ov! =27 /2 =2

which forms an unbounded sequence. Similarly, neither u is

dominated by w.

Theorem. Let A be the Banach algebra from the previous

lemma. Let C be any isometric extension of A. Then there

- 478 -



exist no b, c€C such that u = bv + cw,
Proof: I. Let k>0 be fixed. Let B_ be the £l algeb-
ra over the free commutative semigroup with generators by, ¢

with coefficients in A, i.,e. B, consists of elements of the

o0
form x =%’§; x; by g, where x ije‘ (i,J=0) and Ix"Bk =
i+j
4‘,?_0 lle S S

A}gebra:.c operationa in Bk are defined as follows:

o0 €0
For y = 5‘30 Y3 k:c: itisx+y = 43‘2‘0 (xia+yla)b° ’

Iy =yx = m,% PRLCHOR N A AP R

Clearly B, is a Banacg*g'fg:bra, B,> A. Denote £ = u - bV -
-cyw. Let J = E—Bk be the closed ideal generated by z. Deno-
te d = %: bkc where a;

J
Lemma. It. holds

ij are elements from the previous

0 : o0 12 a4l 0 2
= i+j =-(i+j) i+j -n°,
\dlBk ':.,;éo'aij'r“ ".;,?S.,o"' - kY = 22

c K®(m+*1l) < c0 . So de¢ B . We have

00
az = (L3
4«,3=0

blié(.i,ou -

:I.J k 4
- J -
85.1,0") +«}‘?‘4 ck(ao,;j"l 8,5-19) *; ?4 cxla;5u

(-}
k)(“ - byv - ckq) = ao'ou +.§
i

- a; 1,:}-1") =a, u., Hence a, ued.

i-1, J 0,0 0,0

II. Suppose now on the contrary that there éxists a Ba-
nach algebra C containing A as a subalgebra and b, c e C such
that u = bv + cw, Choose k> max (Ibl,lcl|). Define a homomor-

00 . o0 s
. i.J ild
phism f: Bk—-> C by f( 2‘. ‘ijbkck) =.Foxijb cY, It is

ivj _
lj?:‘ox Jb c l & Z ‘xi.) Ah:tl(-: lclc lxidl .k =
= ‘zzfo %y oyep! B.*

So the definition of £ is correct and |£| £ 1. Clearly
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f(b,) = b, f(cy) = c and £|A is the identical mapping (we
identify elements of A with the corresponding elements of B,
and C, respectively). It holds f(z) = f(u - byv - cw) =
zZu=->bv-cw=0, so £(J) =0, Hence f(ao,o“) = 0. On the

other hand, a oUW €A and f£]A is the identical mapping. Neces-

0,
sarily 85,0% = O which contradicts the condition 4) of Lemma.

Remark 1: A Banach algebra B is called an extension of
a Banach algebra A if there exists a unit preserving topolo-
gical isomorphism of A into B. It is easy to see that the
words "isometric extension® in the Theorem can be replaced by
"extension". The proof in this case is the same. Note also
that every extension C of A becomes an isometric extension

after a suitable renorming of C (see [2]).

Remark 2: The following question still remains open:
Let 1 (unit element of A) be dominated by v;,...,v, € A. Does
it follow that 1 'i.=%4 b;vy for some extension B of A and some
bj€B 7
This question is equivalent to Problem 5 of [4): Does every
non-removable ideal in A consist of joint topological divisors
of gero?

For related topics see also [3].
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