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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20,3 (1979)

THE BERRY-ESSEEN THEOREM FOR RANK STATISTICS
Marie HUSKOVA

Abstract: The natural rate of convergence for the dis-
tribution function of simple linear rank statistics to the
normal one was established for a rather wide class of score-
generating functions ([11,121,[41,163,171), which however,
does not include one of the most usual score-generating func-
tion - the normal quantile function. The purpose of this pa-
per is to extend the assertion on the rate of convergence to
the class of score-generating functions covering the normal
case, The null hypothesis is treated in detail while the as-
sert%on for the contiguous alternatives is stated without
proof.

Key words: Simple linear rank statistics, convergence
rate, distribution free tests, ’

AMS: 60F05, 62G10

1. Introduction and Statement of the Theorem under
Hypothesis

Let X;,¢..,Xy be independent identically distributed ran-

dom variables with common tontinuous distribution function F.

Define a simple linear rank statistics
N

(1.1) Sy =i§a c;n ay(Bin)»

where (°1N""’°NN) are regression constants, (aN(l),...

...,aN(N)) scores and R,y is the rank of X; in the sequence
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In the previous work on the rate of convergence there
were either imposed stronger conditions on the score-genera-
ting function or the obtained rate was not natural. If regres-
sion constants satisfy the assumption B given below the natu-
ral rate means O, %. Icml ), i.e. the same as that for the
near sum of independent random variables -E c. ng(F(xl)).
Juretkovd and Puri (1975) assumed g: bounded and obtained the
rate ;2 4 iciNlJ N"v , o"> 0. B. von Bahr treating more gene-
ral statistics showed that the rate is

4~‘,§N‘°1N laN(:.)l

which coincides with natural rate if

N
3 i) =
max lc;y 0(‘.“24 be;nt?), 4:1%:" lay(i)] = 0(1).

1424 =N
Bergstrdm and Puri (1977) treated the problem for the case 9”
bounded and Xp,...,Xy independent with contmuous distribu-

tione Fy,...,Fy and obtained the rate -Z Ic N‘fzvar Sy)-372,

d > 0. Hulkovéd (1977) got the natural rate for the case of
square-integrable 97" .

In the present paper we consider the following assumpti-
ons:
A. xl,...,xN be independent identically distributed random

variables with common continuous distribution function F.
B. The regression constants satisfy:

N
= 2 =
4.'%4 ) .24 eiy =1, N =1,2,...

4=
(this can be assumed without loss of generality).

C. The scores be either of the forms:

- 400 -



(1.2) aN(i) = @(i/(N+1), i =1,...,N,
ay(i) = Bowii)), 1 = 1,...,N,
with U}(‘i) being the i-th order statistic from the uniform

(0,1) distribution, ¢ is the score-generating function defi-

ned on (0,1).
D. The score-generating function ¢ defined on (0,1) satis-
fy :

lg (Wiek r(u)l/:s"’r , d >0 arbitrary,
lcg'(u)\é- K r(u)3/4"‘{ , dJd > 0 arbitrary,
lg” &K rw) /4,

where @’ and ¢” denote derivatives, K is a constant not de-

pending on u and
(1.3) r(w) = (w(1-uN™t, ue(o,1).
The main assertion is the following:

Theorem: Under assumptions A - D there exists a const-

ant d (not depending on N) such that

N
suplP(Sy< x(var SPV2) - § (0l a,Z, legyi3,

where @ (.) is the normal distribution (0,1).

The assertion of Corollary concerning the two-sample ca-

se in Hudkovd (1977) remains true under ass. A,C,D,

To prove the theorem we combine several known methods.
First, the score-generating function 4 is replaced by the

function

n

(1.4)  @glu) = @u), [N€)/(N+1)£u<l - [N] /(N+1),

@ ([N%] /(N+1)), O<u<[N¥]/(N+1),

- 401 -



= p(1- [N/ (N+1)), 1> u>1 -[ B<] /(N+1),

where 0 < oc< d°/J + 8 and [ NX] denotes the iargeat integer
not exceeding N“, then ?'(R:m/(N-'-l)) by
Py (F(X; )+ (R / (N+1)=F(X;)) @y (PR )42 Ry / (N+1)-F (% ))2
@ N (% (R (HL)*+(2= 9, IF(X;)), 0% 7,4 £1,
for [N¥14 Ry #N-[N*], and by $y(F(X;)) otherwise, and at
last the modified method by Callaert, Janssen (1978) is ap-

plied to get the convergence rate for the leading terms s’,", +
+T 0t Ton defined by (1.9 - 11) below (see the proof of Lemma

5 and Theorem).
Now, we give some notations. Define
{[N*]/(N+1),1-[N%1/(N+1)> = IN,g®
{Ry/(N+1)e IN’e‘}= Aj, i =1,...,N,
{F(Xg) eIy 3= By, 1 = 1,...,N,
the complement of a set A will be denoted by A® and the cha-

racteristic function of A by IfA}l.

The function
(1.5)  hy(X3,X5) = (ulX=X3)-F(X;)) ¢y (F(X;)) -

= E((u(X;-X5)-F(X)) R(F(X; D] %),
where u(x)=l, if xZ2 0 and u(x)=0, if x<O0, has the property
(1.6)  E(hylag,X1%) = Ehy(Xg,X3)|X5)= 0, i%j=1,... N,
Introduce i.i.d. mandom variables ZlN""'ZNN with the pro-
perty:
(1.7)  P(2Z,y4=1)=Dy/N=1-P(2;y=0), i = 1,...,N,
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N
where Dy=NiZ, |y 1317* | 0« <« (1/3-407).

To prove the theorem by the mentioned method it is sui-
table to decompose the statistic Sy (1.1) in the following

way :

6
(1.8) Sy =Sy * Tin* Ton * T, Vows
where

N
(1.9)  S§ = 35, ¢;n( Py (FX))-Egy(F(X,))),

-1 N N
(1.10) Tu=(N+1) ;§4 *gg °iN(1'ZiN)(l-zjﬂ)h)((xi'xj)'
<%

N
(111) Tyy=(he)™d 3}: e4n(Zy+ (122 iy (X X,

i3 4

(1.12) Vo=, Z cm(q(Rm/(Nﬁ)) Py (R y/ (N+1)))

(1.13) Vo= hz, einI4(A3n B, )% (@ (R p/(N+1))= @u(F(X;)))

(1.14) Vqg= -(N+1)°14."_;'-4 eiN J'; (u(x=F(X;))=x) ¢’y (x)dx

(1.25) Vog= -20wD)7 2 o FOK) @y (P(X))

(1.16) Vgy= - £ sy I(Agn BT (R / (N+1)-F(X; ) G R(F(Xy))

(1.7 va,a'lé'_4 ey THA{ A Byd (R 0/ (B1)=F(X; )2 75 0B o/
/(N+1)+ (1= OF (X)),

with 0 £ 7, £

2. Some Lemmas and the Proof of Theorem

In the proofs of the lemmas the following simple rela-
tions will be used repeatedly:
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L B -1/01))22 v (r(a/ (02007, 551,00, 4, where
Ur(‘i) is the i-th order statistic from the uniform (0,1) dis=-
tribution and b is a constant depending neither on i nor on
N (see [9]).

e g e s o1~ B-1)) p>o0, 0<w <1,
-1 NN ’ _
III. N 1&‘5:"4] (r(1/(01)))F = o(n(I=B-1)y - g5 o

Dot < 1.

y .-
= i‘=01), > 1.

i1
LT IRLE T L PP A VRt L M R 1| ’

Lemma 1. Let assumptions A,B,D be satisfied. If the sco-

res are given by (1.2), then

N N
(1.18) POV 12,2, | e;13)=00. =, lejyi?), n=1,3,4.

Proof. In view of the Chebyshev inequality it suffices
to prove that

N
3,3
(1.19) E Vay = 0(LE, Ty,

The relation (1.18) for i=3,4, follows easily by direct com-
putations for the random variables V3N and V4N are sums of
independent random variables with zero means.

As for le we have by Theorem II.3.a in H4jek and Sidédk
(1967), ass. B and relation IV:

v2 e -1l 3 i/ (N+1) i/(N+1)))2 ¢
EV3ye =171, (g (i/(W1))- @i/ (e1))) 2 ¢

-1 . ; 2
£ (N-1) 4/12?“4)#1"..,‘ (@ (i/(N+1)= @(LN¥)/(N+1)))“ £

iy ; —2(=3/4+ 0%
420-17K 2, H(i-[N‘J)/(Jlf:l)}z (r(1/(nw1))) "2 (=344
I 4
< 25/2-26’!‘-3*2‘(“4‘1)3/2-26;:24 i-3/2+2¢;'= O(N-3/2).

Q.E.D.
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lemma 2. Under assumptions of Lemma 1
N 3" N -3
PUVey 12,2 le;yl™) = 0CZ Tejyl™)e

Proof. The vector of ranks (Ryy,...,Ryy) and the vec-
tor of order statistics are independent under ass, A, Thus

one can write (see p. 160 H4jek and 3iddk (1967)):

N c
(1.20)  E VB =B{E4(,Z o, (T9ASH(Rjy/(N+1) -

v Ry gr v Rk vtz <

-1 (), 2 _,2.(i)y, £
£(N-1) «:/(ZNH)#I,;,,L Ef(V' P -i/(N+1)) ?va )3 &
£(N-1)"1 sup 9’2(\1) = var v(i)

we (0, i/(N+1) & Iy .

where V(’)=(V(1),...,V(N)),V(i) denotes the i-th order sta~
tistic in the sample (F(X;),...,F(Xy)). The last expression
in (1.20) is by ass. B and relation I smaller or equal to
(N-1)"L(Ne/ (1)) "3/2420 = b i(N+1-1)N 3=0(N"3/2),
LNNE Ty
Q.E.D.
Iemma 3. Under assumptions of Lemma 1

N 3 ! 3

4z1
Proof. Decompose VZN as follows
'l
- [
VZN = ;'?4 CiN I&Ai}(cyl(RiN/(Nﬂ)- q.(F(xi))) +

N
+, =, cyy TF(X)<INC] /(N+1)} (@ (R, o/ (N+1)= pp(F(X ) )4

2 =1

=

+ F, oy HEX)> N-IN%D/(W1)F (@ (Ryy/ (N+1)= (F(Xg )))=
= Vit VantUaR .

Similarly as in the proof of lemma 2 we have
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B YRR o)yl (Ry/ (041))- 9y (P(X )1 HaZHA R 4

£m-1)"t E( g1/ (1)) =gy (vi3)))2 2

=
p
1/ 0g 1y

N<
cam-0™VE ] (a-ven? (v Ber g/,
- GR2(IN] /(W1))= O(N"3/2),

To obtain the assertion on V;’f‘ we define the random variab-

les
Y;=1 if F(X;)< [N¥)/(N+1), i=1,...,N,
=0 otherwise.

Obviously,

N
P(E, ¥;2 b€ e™N (B o1 =e™®N (1-[N<1(1-e)/(Me1))" <
£ exp{-bmf e(l-e)[X=<]3 .

Thus choosing by= S[N4]+1 we get
N -1/2
P(E, Y57 by) = o5,
Now,
o | 3. \
(1.21) P(_lvznlzfz lesnl=) = P(i‘z4 Y;>by) +
N
*x 3 -1/2
+ P(,;‘,?q Y; < bN"VZN IZ':;{ lciNl )£ o(N ) +
e o B A o130 (i, eeesig))
i1 G, 0y e R 5
PGy (ig,000,ig)),
where =* denotes the sum over all permutations of (l,...,N)
and Gk(il,...,iN)={Yil=...=!ik=1, rik+1=...xiu=oi. For the
conditional probability in (1.21) one can write

N
(1.22) 1>(|l_z1 cyn IF(X) < [NG/(NM1} (@y(R, o/ (N+1)) =
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N
- guFXON |2 = legyPlo iy, iy =
R .
= P(],Z 05 y(plRy_p/(N41))= gg(IB<1/N41))) 2
N
3 .
26:21 Icin\ yok(il”"”‘N))’
Clearly,

P(Pimu=jl<'}k(il,...,iﬂ))=k.1 for j,m=l,...,k
=0 otherwise.
Thus by Chebyshev inequality the righthand side of (1.22) is

smaller or equal to
(1.23) (E le, 132 12 (z (i/(N+1)
1. = cypl™) ik °1 NG (g ) -
N< k
-?N([ J/(N+1)))) + Z Z me i n(k(k-l))

v*m

s
4.__24 =, (Pn(L/(N+1))= @u(IN<1/(N+1)) ( gy (s/(N+1)) =

rkd

- on(CN<1/(N+1)))3 .

Notice that

(1.24) =* z 1 5w PGty ey =3T3 crm1/ e,

(1- [N2]/ (41K k>3,

[N -
(25) % E = ey ey WO preeerig==(N2) (cna/

min
/K, Q-7 NE, k22,
Iv
e (D) a0y (RN (o - B wd,

By definition of gy the expression (1.23) equals zero for
k<N% , Thus combining the last inequality together with
(1.21 - 1.25) and recalling the definition of ¢y We obtain
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: 3) o Y2y, 5 2, ey 2 A (%1
PV, 12 =, 1 c;l0) £0 CiN foziNe4 W k-1

N-k &
-1\ 9 . _
-0~ YFH) (- m) i Sgq (RO
- N -
- o N4/ 20 D402, legyl 72 v
3 2 -1/2
[u’if‘\. L(?N(l/m”l)) P [N%1/(N+1)))° £ o (N ) +
+ (,-?;4 logg))2 b3 N3 L/2)"3/24200 (x71/2),
The member v;;* can be treated in the same way. Q.E.D.

Lemma 4., Under assumptioms of Lemme 1

P( Vgylz N2y /2,

Proof. Since ass. B and the convexity of the function
(r)¥, 9 > 0, one has

E Vgg <47 (am/(m)-r(xln‘ ¢ 3 R/ (V1) +(1- 7 )
FOX)).14a)n B33 < 471 B{(Ryy/ (N+1)-F(X 4,

+ (g (Ryy/ 94 1)0) 7724 (1= ) (2 (RCXDD /) A A B =

= a~1
4 (8D, 1*'(1"'11")1)“2),0 nyg<l.

Ve estimate Dy, and Dy, separately. The independence of
(Rijseee,Ryy) and V(o) ong retations I and IT imply

Dra# BEB(CR g/ (1)) y(Rand )4 Ry o/ (902)0) 172 183 ) V6002 =

N-[N<]
=N1 s E(v)

3alN<T+1 - /(4G T2 2
N-LN<]
£b §-3 . _
T o TH 1) 220032,
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Clearly,
E{ (R E(Ry 0 X, ) 4/3 £ (2 (P(X)) ) "IN (2 (R (X)) 7802,

(Rm forms for given X, the sum of independent random vari-

ables.) Thus we have

Dyo% 23 (W1)™* EL(R p-B(R 1 XN *(r(F(x)NT/2 1iB37 +
+EA(r(F(x)) /2 (1-2p(x) ) * 14833 £

£23(w1))73 Ei(r(F(X)))772 TBE+ (N-2) Bi(r(F(x))/?

I{Blﬁ +0 (N-3/2) .
Q.E.D.

lemma 5. Under assumptions of Lemma 1

P(1 Ty lz};1 i cmi3)=o(é4 legyl ).
Proof. Decompose TZN into three summands as follows:
T2n=‘“+1)-1,;§?- cinZinnn (X, X5) +

-1
+ (N+1) igi ciNZiNhN(xi,XJ-) +

-1 =
+ ()T z ¢332 j(1-2; )y X, X5)=Q)+Qog+Qay e
For le we can write
N N -1
QN ‘z a4y, 4(3 - 4 CinBanhy (X, X)) ()7,
where q;y are martingale summands (E(qiN§Xi+1,...,xN,Zn)=0)
and, for given xi and ZN’ QN is the sum of independent ran- )
dom variables with zero means, Thus applying the theorem of
Dharmadhikary, Fabien and Jodgeo (1968) to Q,y with 2 =3 and

then to QN we obtain
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3 -3g & 1/2 Y
(1.26) n‘{xlqml VZgd €« Ne)B(E, 2307 =) Zoye

g 3
BLZ copp(Xy, X5~ &

¥ N
e 1) IBCE 23002 =, 2oyl oy PN 2EIng (g, X 13,

Obviously,

Elng (x;,X;)13¢ f; (u(1-u)) | @y(w) |3 au=o(n{i= (1/4-3D))
N 172, _o(n3/2y-1
Combining the last two inequalities with (1.26) we get
N
3. (n-374 3,5/2
EIQ I =N/ 22 Teyy 1974,
Similarly,
N
ElQyy 2o (N34 2 | e 1972,

N
x!Q3N\3=o (N-5/2 (E.1 i °inl3 )5/2) ]

The assertion of our lemma now follows from the Chebyshev in-
equality,
Q.E.D.

Proof of Theorem. It suffices to consider the scores
(1.2) (see Lemma 2.4 in Hu3kovd (1977)). In view of the pro-

ved lemmas and the decomposition (1.8) it suffices to show:

1/2 .
(1.27) e:plP(S§+T1N< x(var Sﬁ) )-i)(x)\-o({.é,1 lciNl3).

We will show it using the Berry-Esseen argument in a similar
way as in [3].

Without loss of generality we may assume that

var S§= 1.
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3.

N
Py =2 leix
By Berry-Esseen lemma the righthand side of (1.27) is smaller
or equal to
1.28) [ I B exp{it(SE+T )3~ B expiit Sf3 At ljat +
. » Piit(§grTy piit Sy
IH<11~5

+ [ 1B expiit Syi- expi-t?/23 ) t™} ars0(py)
ltlepy'e

for any arbitrary fixed € > O.
Since S;' is the sum of independent random variables with
Elgg(FX; ) I3< +

there exists €,> 0 such that

|E expiit S4i- expi-t?/23L1t™1dt=0(py).

ri<mle,

As for the first member in (1.28) one can easily get
N

2 3

11

N
EEy oy )=n)72, 2 = {eyB(1-2;,) (1-2 ) B3 (X, X5)+

#4
; -1
+e3 e srB(1=2; ) (1-2 5y (X; X 5Dy (X 5, X, 0 =0 (N,

where Zy=(Zyyn,...,Zyy). Further, by direct computations (as
in Lemma 2.7 in [6])

IE 7, expiit S§31=0(p3/2).
Thus regarding

E(exp{it(S}‘,*—TlN)}- expfit Sﬁ})'—‘E Tlnexp{it SN} +2’1E'1‘fN Iy
}¥x!%1, one has

ey [ t™LIE explit(S§+T )} - E exptit s¥yjlat =
icpy 2
=0(py) .
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Put
N
g'm’;‘?q ¢; w2 (P g(F(X;))-E 9p(F(X;))).

For the characteristic function of the summands of S“m the re-
lation

E(exp{itcjn(?m(F(xj))-E yn(r(xj)))zw}\zw) =
- 2.2 3.3 3

Insnlel,
holds. Then recalling the definition of ZJN we observe that
for 1t14 ppl(B)g y(F(X)))-E gy(F(x))13) 1372

IE((E expiit(Sg+Ty )} =E expiit Sy3)/2y)l=
=IB((E exp{it S]y3.E expdit(T y+Sy-si\)3)/z)l«

N
£VB(E expiit Siydlzy) =T BQ- 2elz b g ey 212 4

3 ) 2
E ) @y(F(X4))=E $y(F(X5))1°/31) £ expi-t?(1-
TN
3 3
-2, Lamle an WU BT @gF(X)))=B @(P(x;)1 3/3)Dy/2n s £
£ exp{-t2Dy/ (4N} .
Consequently,:
s . -1, ,
_Mf L | B em{:.t(S;-rTm)}- E exp{it S‘}}}l.l t™lat £
‘pN <Rl£f e,y
ﬁexp{-pﬂlplj{fﬂ}log ( $2p§1)=o(pu),
where €,=3/2 E|qy(F(X;))= 9n(F(X))I3.

Combining the last inequality together with (1.28 -1.29) we
can conclude that the first member in (1.28) is O(py) and thus
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(1.28) is O(pN) for € =min( 61' ea)‘ Q.E.D.

4, Statement Theorem under contiguous alternatives

We will assume that

E. xm,...,xm be independent random variables, xjn have a
density f(x, ng) € 3 , where 6 N are unknown parameters
and ¥ is a family of densities f(x,0), 8 € J (J is an open
interval containing zero) satisfying
a.f(x,0 ) is absolutely continuous in 0 ;
b. the limit

£(x,0)= 1im 6~ 1(f£(x, 8 )-£(x,0))

e=>0

exists for almost all x;

¢. there exist 90 and a constant C such that for all |0l £ Go

f <f’(§:0>22 ax<c;

F., Unknown parameters BlN""' Oyy satisfy:

¥ 5221 £ 6.0
3T 09 33y Ym0

G. The score-generating function defined on (0,1) satisfy:

)+1/4-J" d > O arbitrary,

lg (w)l £Kkr(u
e’ (W< Kr(u)a/B'J d > 0 arbitrary,

I (w1 & Kn(w)3/2,

where r(u) is defined by (1.3) and K is a constant.

The main assertion of this section:

Theorem. Consider the statistic Sy given by (1l.1).
Then under assumptions B,C,E,F,G there exiat constants A and

@ (both not depending on N) such that for max |0;xl ¢ @
o 1ejsN N °
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-1/2 A 3
a:plP(sN- ¢g< x(var Sy) )- & (;)|6A§§4(\cjnl+ 185517,

N
where ("l{=5§1 cix %{;’o)*o q,t(F(xj,O))f(xj, QjN)dxj.

Remark. There is some flexibility in ass. E and G in the
following sense: admitting milder conditions on the distribu-
tion of xlN""’le we must impose stronger conditions on the
score-generating function @ and on the contrary.

The proof of the Theorem is omitted for it is very closed
to that under the hypothesis (it is easy to prove analogous

lemmas utilizing Lemma 3.5 and 3.6 in Huskovd (1977)).
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