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COMMENTATIONES MATHEMAT1CAE UKIVEBSITATIS CA10LINA1 

19,4 (1978) 

A GENIRAMZTED BiaiOP - GONČA1 CONSTRUCTION 

Jan fiEHTCH, Praha 

Abstract; If A is a closed subalgebra of C(X) and F 
is a closed subset of Xf this note gives a suff ic ient con­
dition in order that F is an intersection of peak sets for A. 

Key words: C(X), Banach function algebra, peak point 
and set, p-point and set. 

AMS; 46J10 

The purpose of this paper is to apply the well-known 

Bishop-GonSar construction (Propositions 1 and 2) of the peak 

point of a Banach function algebra to the case of the peak 

set which is not necessarily one-point one, and to prove an 

essential generalization of this construction (Theorem). 

In the whole text A will be the Banach function algebra 

on X, i.e. the Banach algebra of continuous complex-valued 

functions defined on the compact Hausdorff space X, with usu­

al algebraic operations and the sup-norm I • i f containing 

constant functions and separating the points of X. 

^ peak: set (for A) is any closed nonvoid subset F of X 

such that there is an f in A satisfying 

f/F = 1, l f(x)l«r 1 for every x in X - Ff 

where t/j denotes the restriction of f to F. 

A p-set (for A) is a nonvoid intersection of an arbit-
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rary syatcm of peak a eta for A. 

It is obvious that a p-set is a peak set if (and only 

if) it is a G^-set. 

A peak point (p-point) is a one-point peak set (p-set, 

respectively). 

In t2J Gonfiar has proven the following 

Proposition 1. let X be a metric space, x a point of X. 

lat 0<a<b<l. Suppose that for any open neighbourhood P of 

x in X there is an f in A satisfying 

If l< 1, I f ( x ) | > b, l f l x - l J < a , 

where I f |- means sup-{ | f (y)| *y in I ] . 

Then x is a peak point for A. 

GonSar's construction is a beautiful generalization of 

the well-known Bishop's one [1J; Bishop came to the same con­

clusion for a special choice a = 1/4, b = 3/4. Curtis in C31 

has proved GonSar's theorem for non-metric space X (he requir­

ed only the singleton x to be G^*), and for the cosed subspa-

ce A of X(X) which is not necessarily an algebra. Curtis* 

proof is rather simpler than the Gonfiar's one. 

All these proofs remain valid without any change if we omit 

the condition "X is metricw or "x is G<f " and substitute wm 

p-point" for "a peak point" (cf. Gamelin £43, Chap. II, Sec. 

12). 

Another, non-constructive, and may be sometimes more 

fruitful way of researching oeak (and interpolate) sets is 

the way of estimating orthogonal measures to A. Here the clas­

sical paper is the Glicksberg's one C5l. Glickberg's results 

were generalized, for the case of mere subspaces if C(X), by 
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Bernard [6Jf Briem C 7, 8J, Briem and Rao C9J. Bernard in C6J 

follows both constructive and "measure* ways: his nice con­

structive result is (in translation from the "interpolation" 

language to the "peak" one) a precursor of the mentioned Cur­

tis* construction in [3] (via our Proposition 2). 

An immediate consequence of Proposition 1 is the follow­

ing 

Proposition 2s Let 0 < a < b < l . Let F be a closed non-

void subset of X. Suppose that for any open neighbourhood II 

of F in X there is an f in A satisfying 

If I < 1, f/f = bf tf[x-u<a. 

Then F is a p-set for A. 

Proof: Let X be the tppological space arisen from X by 

means of identifying all points of F. More precisely, Y. is 

the quotient space of X in accordance with the pairwise dis­

joint closed covering of X formed from all singlttons y, y 

in X - Ff and the set F. It is rather simple to realize that 

Y. is a Hausdorff compact, too. Let B be the subalgebra of A 

comprised of all functions in A which are constant on F. B 

may be regarded as a Banach function algebra on Y, and then 

it satisfies the hypotheses of Proposition 1. 

Our aim is to generalize Proposition 2 in the following 

manner: 

Theorem. Let F be a closed nonvoid subset of X, and let 

0< a<llsb. Suppose that for any open neighbourhood U of F 

in X and for any e> 0 there is an f in A satisfying If | <: b, 

If - 1|F< e, lflx„rj< a. 
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Then P i s a p-set for A. 

Before proceeding to the proof of Theorem, f t shal l s t a ­

te two lemmas. 

Lemma 1. Let U be an open neighbourhood of F in X, and 

l e t 0 < e - < l . Under the hypotheses of Theorem, there i s an f 

in A satisfying 

t f 1< 2bf If - l lF«<e f \f\%mmU^e. 

Proof; We shall construct, by induction, functions f 

in Af n = ! f 2 f . . . such that 

(1) |fn|<2bf lf n-ll F«e, t^x.ti<**
n. 

The existence of f^ satisfying (1) follows immediately from 

the hypotheses. Suppose now flf...,f have been constructed. 

There is a positive number q for which 

(2) (1 -t- q) 1 fn - llF + q*e. 

Setting 

V « 4 x in X: 1 fn(x) - 11 < e } n U, 

V is an open neighbourhood of F in "X. By the hypotheses, the­

re is a function g in A satisfying 

|gl« b, |g - llF<q» l*lx<.v<a. 

Put fn+1 - fn#g» fhen fn+1 i s in A and sa t i s f i e s the induc­

t ion conditions (2 ) . Indeed, l ^ n +xt < 2 t o i because 

I f n + 1 l ? < r l f n l ¥ l g l i (1 • e )b<2b, and 

l f n + 1 I ^ v A l f n l - l £ l x . ^ 2 b a < 2 b f . 

I fn+l * 1 ( F * '« fn " * + g " l l r * l « l ? ' f n ~ ^f + 

+ I* - l l f
Z C l + Q ) , f

n - Hf + q < e by (2); 
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' W x - U * lfnlx-U-f*ix-V<an'a * aIl+1-

Finally, let m be a positive integer such that a < e. Put­

ting f = f f we are done. 

Lemma 2, Let f be in A, K>0, and let If |j»<K. Then, 

for an arbitrary ef 0< e<l f there is a function g in A sa­

tisfying 

lg|< 2bK, If - g|f<ef 

provided all the hypotheses of Theorem are fulfilled. 

Proof; Let 

U «-(x in X: | f(x)|<K|. 

Obviously U is an open neighbourhood of F in X. Then there 

exists, by Lemma lf an h in A such that 

l h l < 2 b f f h - l l F < e C , l h | x ^ < e C f 

where C i s equal to (K + | f | ) ~ . Putting g = fh we have 

lg - f | p A | f ( . l h l - l l F < e , and | g | < 2bK. 

Actually, 

l g l x . u i l f U l h l X - T J < i f | . e C | i e f and 

l g l y * | f l u . t h l < K . 2 b . 

Proof of Theorem; Let U be an arbitrary open neighbour­

hood of F in X. We shall construct, by induction, functions 

f in A, n » lf2f#.. satisfying the conditiom 

(3) l f n l < 8 ( l - 2" n )b 2 , 

(4) |fn - l ! f < 2 - n , 

(5) U n t x . u < 2 " 1 ( 1 - 2"n)> 

(6) |fn - f n + 1 J < 2 2 - V . 
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% Lemma 1, we have an f., in A such that 

| f 1 U 2 b < 4 b 2
f 1 ^ - l | f<2-2<< 2" 1 , t f 1 I ^ | J < 2* 2 . 

Having the functions f , f # . . f f constructed, take a g in Af 

by Lemma 1, such that 

U t * 2 b f tg - l t f < ( 8 b r 1 , t g l 1 . l J < ( 8 b ) " 1
f 

and, by Lemma 2, an h in A sat isfying 

t h l ^ 2 1 - B b t tfn - 1 - h |<2- 2 -* n . 

Put fn+1 » fn - gh. Then fn+1 i s in A and 

l f n + 1 U l f n [ + I g L l h U e U - 2~n)b2 + 22"n b2 M 

* 8(1 - 2"1"11) b 2
f 

l f n + l -*! r = i f n * * ~h * h * % ^ , fn ~ X ~ h<f * 

+ I h l . I g - l ! F < 2 - 2 - 1 1 4- 21" l lb(8b)"1 « 21"11, 

1 Wx-U^nbt -U * •* l M
l k | < 2 " 1 ( 1 " 2^> * 

4- (8b r 1 ^ 1 " 1 ^ a 2""1(1 - 2"1"11), 

,fn+l " f n , j l , i l f al^2"11**2. 

This shows that all conditions (3-6) are fulfilled. 

% (6), the f have a limit in Af say f. By (3), Ifl& 

* 8b2} by (4), f/F * 1, and, finally, \t\XJQii2ml by (5). 

The assertion of Theorem now follows from Proposition 

2. 

The author would like to express here his deep grati­

tude to mir. Jaroslav fuka CSc for a whole range of fruit­

ful conversations on the subject of this paper and many ot­

her questions of Banach function algebras theory. 
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