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ON SURFACES IN 2 WITH CONSTANT GAUSS CURVATURE
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Abstract: A global characterization of surfaces im
with eonstant Gauss curvature.
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H. Fath el Bab introduced in (1] the conditions imply-
ing H = const on a surface M in 23. In what follows, we ap-
ply the method used in [1] and prove an analogous theorem

for the Gauss curvature K of M.

Let M be a surface in the 3-dimensional Euclidean spa-
ce B> and OK its boundary. On M, consider fields of ortho-
normal frames {M;vl,vz,,v3} with v,,v, € T(M),T(M) being the
tangent bundle of M. Then we have

(1) au = wlvy + w2y,
dvy = @ iva + w%v:’,
dv2 = ""ivl +w %vy

S TR |
dvy = -w3v) -~ @3V

and (see [2], p. 8)
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(2) Oi = awl+ bwz, w% = bl + 002;

(3) Aa = da - wa"i = a0l + /3:»24

Ab = ab + (a-c)wi = ﬂwl + 7@2,

Ac = de + 2ba>§ = Twl + d'coz;

4)  Ax=dw -3p02 =40+ B-RW2,

AR=ap + (« -29)wd = B+Kw! + (CraK)w?,
Ay =ay + (2p -Nwd = Cre el + (1K) w2,
8= ad + 37 w? = (>bKIw! + 0?2

where

(5) K = ac - b2

is the Gauss curvature of M.
The covariant derivatives Kl’xij (i,j = 1,2) of K, de-
fined by

(6) dK = Klal + xzaz,
W - Ko = K @b+ Kpef, ag r el = kel s
+ Kppw?
are given, according to (3) and (4), by
(7) K1=a7-2b[3+e«.,K2=ad’-2b7+c[3;
(8) Ky =aC-20B+ch+2(ay - 32) + (ac - 262K,
K, = aD - 2bC + ¢B + (xd'-39) - b(a+c)XK,

K,, = ak - 2bD + cC + 2((3d°- 72) + (ac - 2b%)K.

Now, we formulate the
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Theorem 1. Let M be a surface in B with K> 0 and

OM its boundary. Let V,,V5 € T(M) be orthonormal vector
fields on M such that

(9) VK =0, VK=0
on 9M and
(10) v;»,Kk =0, VK =0
on M, Then K = const on M.
Proof. Consider a 1l-form
9= Ro!+ Rw?

on M. The covariant derivatives of R (1= 1,2) being de-

fined by
2 1 2
dR) - Bwy = R @ + R,07,

2 _ 1 2
AR, + Rjw; = Ry @™ + Ryw

we have, according to [1], p. 247-250, the integral formula

an  LERRy) - RRyet + (RiRy, - BpRyp)w™) =
= J, [2(R Ry = RipRy) = (B + BK D wla w?,
Now, let us choose the tangent frames associated to M
in such a way that v, = Vl’ vy = V2. Then it follows from
(6)
ViK = Ky, VK = K,
and

= 2
VViK = Kll + Kg“"l(vl)'

Thus we have, using (9),(10),
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K, =0,K;=0
on M,
K50, K, =0

on M and hence the integral formula (11), re-written for the
1-form Klwl + sza, yields

2=0.

2 K2 1
fM(2K12 + KK) 0"A @
Thus especially

K1=V1K=0

on M, i.e. K = const on M.

Remark that the surfaces with K = const depend on 4
functions of 1 variable.

Following [1), we are going to prove that there are,
locally, surfaces M in B3 possessing two orthonormal tangent
vector fields V,, V, such that V,K =0, V,V,K = 0 and with

K not constent on M. For this purpose, we shall prove that

the surfaces satisfying the preeeding conditions depend on
4 functions of 1 variable,

The considered surfaces are defined by the system (4)
and
(12) VK = ad” - 2bp +c¢f =0,

VViK = aC - 2bB + cA + 2(xy - #2) + (ac - 26%)K = O.
Because of Kfconst , we have VK = Kl* O. By exterior dif-
ferentiation of (4) we obtain

(13)  AAnw!+ 8Baw? = (4pK + KD Aw?,

[{]

ABaw! + AcAw? = [y - 2K - 8k, + BKJetAw
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ACAw! + ADAw? =[(24 - 38)K - bK, + cK.‘,Jleaz,
ADAw! + ABAwW? = - (47K + sz)rdlA w?
. where
(14) AA = dA - 2(2B + bK) w2,

AB = dB + [A - 3C - (2ave)K 1 w3,
AC = aC + 2(B-D)w3,
AD = ap + [3C - E + (a+2¢)K] w3,
AT = 4B + 2(2D + bK) 02,

Differentiating (12) and applying (3),(4),(14) we get
(15) aAd - 2bAy + cAR + dAa - 2y0b + BAc - Kwd = 0,
aAC - 2bAB + cAA +
+[C+c(2k-1%)) Aa-2EB+b(3K-1b2)]Ab+

+fA+a(2K -b2) T Ac + 2(xBy - 2pA3 + yha) +
2
+ 2‘[12(01 = 0.

With regard to the second equatiom (15), the closure (13),
(15) of the system (4),(12) contains q = 4 linearly indepen-
dent forms and s; = 4 linearly independent exterior equa-
tions, so thats, = 0 and Q = 4. Applying the Cartan’s lem-

ma we obtain from (13)

1
bA =Pt + PP,

AB = (Fp + 4K + bEDwd + P02,

AC = [Py + By - 20)K - oK) + B 10t + P02,

AD = [F, + (20" - 3p)K - bK) + eKyJot + R0 ?,
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AR = (B - 47K - DKot + Few?,
the functions Fy,...,Fg satisfying twokindependent rela-
tions obtained from (15) by elimination of w3, Thus, N =
= 4 and the general solution of the considered system de-
pends on 4 functions of 1 variable,
Finally notice that the heorem 1 and that one due
to H. Fath el Bab can be generalized to this form:

Theorem 2. Let M be a surface in B with K>0 and

3M its boundary. Let F(H,K) be & non-zero functiom defin-
ed on M. Let V,,V,e T(M) be orthonormal veetor figlds sueh

that
V,F(H,K) = 0, V,F(H,K) = 0
on oM and
V,V,F(H,K) = 0, V,F(H,K) = 0
on M, Then F(H,K) = const on M.
The proof of this assertion is analogous to the above

mentioned one.
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