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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,4 (1978)

A NOTE ON COFINAL EXTENSIONS AND SEGMENTS

J. MLEEK, Praha

Abstract: We work with an extension U% of the theory
U, where U is the theory of the directed antisymmetrie re-
lation with an arbitrary large transitive element.

We present a necessary and suffieient condition for a
eofinal Xouextenaion of a model of U¥ to be its elementary

extension, We also show that the segment determined by an

elementary submodel of a model of U%is elementarily equiva-
lent with them. Finally, we give a necessary and sufficient
condition for the ex%stence of an elewentary cofinal exten-
sion of a model of U, We also present an extension T of U
wi th the following property: each mo el of U, which is a co-
f;na].Ao-extenaion of a model of T is its elementary exten-
sion,

Key words: Cofinal extension, elementary extension,
segment, schema H (induction schema).

AMS: O2HO5, O2H15

§ 0. Introduction. In [3] we studied the theories U
and S. S is the theory of a discrete linear ordering with
the least element and without the last element. We obtained
relations between the extension U“’(S“’resp.) and the theo-
ry U (S resp.) extended by the induction schema, and a ne-
cessary and sufficient condition for the existence of some
types of end-extensions of countable models of the theory
U (S resp.). '

This note extends the results from [3] by the ones men

tioned in the abstract. Variants of these results also hold
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for the theory S.

Note that the Zermelo-Fraenkel set theory ZF ean be vie-
wed as an extension of the theory U“’, and the Peano arith-
metiec P as an extension of the theory S®, The results fol-
lowing for these theories from the theorems presented can
be strengthened by using some further special properties of
these theories., (See for ex. [1].) We mention scme results

for these theories in § 4.

§ 1. Notatioms and terminology. By a language we mean

a first-order predicate language with =, Strings of variab-

les are denoted by x, ¥,... o Writing € A we mean that & is
a string of elements of the set A. i, j, k, m, n are variab-
les for natural numbers and « is the set of natural numbers.

If T, € Fm(L) we put rT = {g ¢ Fm(L); there is a 1,"5
€T such that T~ @ = 3% . Usually we identify T" with
Plog.ax..

For T,S&€ Fm(L) we write T< S to indicate that T+—¢ im-
plies S+ @ ., Writing T=S we mean T<S and S<T,

For a mapping F:Fm(L)~—> Fm(L) and a set ' & Fm(L) we
put F(T") ={F@);@el3.

Let C be a set. Then L(C) is the language L augmented ’
by a new individual constant ¢ for each c¢&C. Let T £ Fm(L).
We put T(C) = 4@ (g),.ea); P(xp,0...) €T, c16C,... and
X1yees are free in @3 .

By AW L we mean that A is a structure (or model) for L.
We often use the same symbol for a model of a language L and
for its universum, Let C be a subset of the universe of a mo-

del A of L, Writing Ch L we mean that there is a substructure
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of A with the universe C, Writing a¢ A (@6 A resp.) we indi-
eate that a is an element of the universe of A {& is a string
of elements of the universe of A resp.). .

Assume that Ak L, Let X be a subset of the universe of
A. Then(A,a) .y is the usual expansion of A te a structure
for L(X). We shall identify the members of X with their names.
If there is ne danger of confusion we write A instead eof
(A,a)a“\.
let A, B be structures for L and let T' € Fm(L). We say
that A is a T’ -substructure of B if A is a substructure of B
and, A= @ iff B ¢ for each sentence ¢ €T (A). Writing
Ac B we mean that A is a substructure of B (and B is an exten-
sion of A) while writing A<B we mean that A is am elementary
substructure of B (and B is an elemen tary extension of A).

let L be & language eontaining a binary predicate < .
Let X be a string X),e+e X, of variables and x a variable. We
write (3 X<x)@ for (Ix;<x)...(Ix <x)g . Similarly with
VY . Let AL, 286A and aeA., Writing @8<a we mean that the
relation b<Aa holds for eaeh member b of the string a.

We denote by A, the set of limited (w.r.t.<) formulas
of the language L. We put TTO = 20 = A° and define by indue-
tion:

Ll

1 =YX, 9e H 3,

= n+l

Let A, B be models of L. We write Ac B to indicate that

i3%g; o eT 1.

A is Trnusn substructure of B.
Let C be a subset of the universe of A, It is said to be

a segment in A if it is closed under <A. It is said to be
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cofinal in A if for each a€ A there exists e¢€ C such that
a<Ac.

B is an end-extension of A if B is a proper extension
of A and the universe of a is a segment in B. B is a cofinal
extension of A if B is a proper extension of A and A& is co-
final in B,

The set "< Fm(L) is closed under limited quantification

(C1q(T*)) if @ € T implies (Jx<y)@ eT and (¥ x<ylgp e
€ T . Evidently, Clg(T") implies Clq(T'u 1 (T*)).
Let & be a formula. Writing g.c.¢g we mean the general

closure of ¢ .

§ 2., Some properties of the theory U.

2.0,0. Let L be a langusge with a binary predicate < .
We denote by Tr(x) the formula (V y< x)(¥V z<y)(z<x) (x is
transitive). U (more preeisely U(L)) is the theory in L with
the axioms:

(Vx,y)(32)(x<z & y<z)

(VY x)(Jy)(x<y&k Tr(y))

(Vx,y)(x<y =1 (y<x)).
We have Ul x<y-—» x4y and, for each @& Fm(L),

Ur(YX)e = (Yx)(¥X<xX)qp

Uk (3X)p = (AX)(IX<x)p »

Let ¢ be a formula of L, let X,y be free in ¢ . We de-
note by H(g (X,y)) the general closure of the formula

(VW (Y x<w)(Iy)lg — (Iv)(VE<u)(By<v)gp)
where u,v do not occur in ¢ . Writing H( @) we mean
H(e (x,y)) with some x,y free in ¢ .

For n ¢ @ and each theory T in L we put
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= TUH(TT,) and 7%= U{™n ¢ w3,

2,0.1. Lemma. Let n20. Then T\'g!:l is elosed under li-
w

).
Proof. By induction on n. For n = 0. If @ € X, then

mited quantification (i.e. Clq(TT

there is a ye A such that Ur @ = (dy)y . We have
U (VY x<u)<§ =(Vx<u)(3 y)qr = (Iv)(Vx<u)(dyec vy,
and consequently (V x<u) Pe 2 1 + The relation (A x<u)pe

62“11 immediately follews, Suppose the propositionm is true
for some n. For e zn+2 we have some L eTTn+1 such that
" - @=(3 ¥y)¥ . This follows from the induction hypothe-
sis, Thus,

unt 1

F(Vx<uw@ = (Vx<cw)(@y)y =(Av)(Vx<u)(3y<v)y.
From this amd from the induction hypothesis we obtain

gntls Un+1 )
(Vx<u)pe 2n+2 « Now (Ix<u)ge = o immediately follows.

§ 3. The main result s and their corollaries.

3.0.0. Theorem. Let A, B be models of L. Let B be a co-
final Ao-extension of A and AFU” . Then
A<B iff BpU®

This theorem is an immediate consequence of the following
proposition,

3.0.1. Proposition. Let A, B be models of U and let B
be a cofinai Ao-extension of A, Then

(0) AcB

(1) if AwU° ¢pen A 5B,

(2)  Let Bmy©, Ther fer each n2C holds:

if ARUM] then Ac_,.B iff B U",

n+3
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Proof. First, we shall prove the
3.0.2. lemma. Let n20 and @(X,¥,%Z) € TN ;. Then

U H(g (R,5)).

Proof by induetion on the length of X. Suppose the statement
holds for X of a length m. Let @ (x,X,y,%) € 'ﬂ'n be a formula.
where X has the length m, lLet u,v,w do not occur in ¢ . Assume
that UM (¥ x,X<u)(3 y) @ (x,%,y,Z). From this and by using
the induetion hypothesis we obtain Uk (¥ x<u)(I w)(¥ T<u)
(3y<w)@ . Now, (¥x<u)(Iy<w)e@(x,X,y,2) e'ngn. Thus ,

PR (3 v)(Vxew)(Fwev)(V X<u) (T y<w) @ (x,%,y,7)
holds. From this and by using the axiom (V x)(3J y)(x<y& Tr(y))
of the theory U we deduce that

U (3 v)(Y x<u)(¥ E<u) (T y<v) @(x,%,y,7).

We shall prove the proposition., (0) Lety e 21(.‘.) be a
sentence. Then there is a formul ¢ (x) € A (A) such that
Ary=(3x)e(x), By =(Ix)g (x). If Am(I x)@ (x) then
Bk (3 x)g@ (x). Assume B (3 x) g (x). Then there is an element
a€ A such that Bm (3 xxa)g (x) and, consequently Am (3 x<a)
@(x). Thus A=(3Ix)@ (x) holds. (1) Let ¢ (X,¥) e A (A) be
a formula with only free variables X,¥. Assume Ak (Y X)(I §)q@
(X,y). Let TweB.{ Let a€A be such that Bmb<a. We have
AP (¥ X<a)(T y)(F F<y)g (X,¥). From this and 3.0.2 we dedu-
ce that there is a e& A such that Am (¥ X<a)(Iy<e)(AF <
<y)@(X,7). The last formula is a A (A)-formul and, conse-
quently, it holds true in B. Thus, Bk(V X<a) (@ ¥)¢ (X,¥).
Now, B (I §) ¢ (v,7) follows immediately. Assume A¥=(3 %)

(Y ¥) @ (X,§). Then there is an & €A such that Am (Y F) @ (8,¥).
Let D eB. Let a €A be such that Bmb<a, We have AR (Y ¥ <
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<a) @ (d,y) and eonsequently Bmw (¥ y<a)g (&,y). Thus
EFq(E,S). The proposition (1) is proved. (2) By indue-
tion on n., n = 0: we suppose At-'Ul, BI-U°, We have to pro-
‘ve that AC4 B. Let ¢(X)e SU;(A) with free variables X on-
ly. We can suppose that @ (X) is of the form (Jy) 3 (X,y)
with some ¥ €T ;(A). (By using 2.0.1.) Assume Ak (¥ X) g (X).
We shall prove that Bm (Y X)g(X). Let beB. Let a€A be such
that Beb<a, We have Am (Y X¥<a)(3 y)y (X,y). Taus, there
is a e €A such that AF(Y¥ X<a)(3 y<c)y (X,y) (by using
3.0.2). We have (¥ X<a)(Ty<clye Su;(A) (by using 2.0.1),
and, consequently B&(V X<a)(Jy<c)y (X,y). We deduce from
this BPC;(S) . Assume BE (VY 'i)?('i). We shall prove that
Am(VX)q@(X). Let @6 A. We have Bm(J y)y (&,y). We deduce
Ae (3 y)w (a,y) from part (1) of 3.0.1. The case n = 0 is
n+1+1 and

B implies BhUm'l. First,

proved, Assume that (2) holds for an n, Let AR U
0

B#e U°. We shall prove that Acn+1+3
we obtain BeU" from the induction hypothesis. If QeTT 1
then H(g) e Tf'l’nn+4. From this (and by using the hypothesis
on A,B) we deduce that B"H(TTn+1)’ and, consequently,
BFUn+1. To finish the proof we must show: if B|-Un+1 then
Ac, ., B.

Let B®U™*1, We deduce from the induction hypothesis

n+l
that Ac B. Let (X)e Sun+3(A) be a formula with free

n+
variables ’?c'only. We can suppose that g(i) is of the form
(3y)y (X,y) with some 3 €TT _,(A) (by using 2.0.1). We are
going to prove that A (VY X)g (X) iff Bi=(VY X)¢ (X). Obvi-
ously, if Bk (Y X)@ (X) then Am(V X) @ (X). Assume that

Ap (V X)@ (X) and let TeB. Let a €A be such that Bib<a.,

We have A (¥ X<a)(3y)y . Thus, Am(¥ X<a)(Ty<e)y (X,y)
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™2 and the

holds with some ceA. (This follows from Awr
+1

3.0.2.), From this and by using (¥ X<a)(@y<c) ye Tru'::,z(A)

we obtain B (¥ X<a)(J y<c)y . Consequently, B (b) holds.

The proof is finished.

3.0.3. Corollary. Let BwL and let AU%, Let B be a
cofinal Ao-extension of A, Then A< B iff BPU‘J.

3.1.0. We shall prove thét the segment determined by
an elementary submodel of a model of U%® is also an elemen-
tary submodel.

Let C be a subset of the universe of the model AL, We
put

A
C = 4a e A, there is a ceC such that adhet .

3.1.1. lemma. Let AEU®, BwU and let Ac_B. Then

(1) A is a segment in B,

(2) AmL (i.e. there is a substructure A of B with the
universe 1),

(3) Acy Iy <o By

(4) Kmu.

Proof. (1) Let a€A and b<a, bé B. Then there is an
elenent c& A aich that Bma<c&Tr(c). Thus, Bk b<c and, con-
sequently, 2 is a segment in B. (2) We shall prove that 2 is
closed under each FB, where F is a function of the language
L. Let F be an n-ary furction of the language L and let T e
e 2". Let a€ A be such that BkT<a. For some b&A we have:
Al (¥ X<a)(F(X)<b) (by using AwH(A_)). Thus,

BiE(Y X=<a)(F(X)<b) and so BmF(E)<b., Consequently, R is
closed under FB, (3) We shall orove that A <, ﬂ:o B. lLet

q(x) be an L(A)-formuk with only free variable x and with
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the following property:
(%) ’A\.hcg(a) iff th’(a) holds for each aecA.

Let ceA. Then Rk (3 x<c)@ (x) iff BE(Ix<c)® (x).

Proof. Suppose Bi(3 x<c)e (x). Then there is a be&B
such that BEb<e &cy(b). We have be A (by using (1)) and
consequently Leb< ¢ & @(b). Thus ?.l-(.3x<c)q) (x) holds.

Now, we have Ac B (by using (2)). Thus, (% ) holds for
each atomic L(K)-formula. We deduce from the facts above that
A €, B. We suppose A c B and, consequently the statement (3)

holds. (4) follows easily from (1) - (3).

3.1.2. Theorem. Let AFU®and let B L.

If A< B then AwL and A<A<B,

Proof. Assume A<B. If & = B then the statement holds.
Suppose ﬁ:’:B. Then A = ’A\. coB follows from 3.1.1l. We shall
prove i<B by induction on the comple xity of formulas. Only
the tollowing induction step is not easy:

let ¢(X,y)eL be a formula with the free variables X,y
only such that for each Ge X, bel:Ak @(&,b) iff Br@ (&,b).
Then for each e X we have Aw (3 ¥)e (8,y) iff
Be(3y)e(a,y).

Let Bed. Obviously, if R=(a Ve (3,y) then
Bp (3y)g (a8,y). Assume BrF(3y)e (a,y). Let & (X,y) be the
formula ¢ (X,y)v (Vz)1 ¢ (X,z). We have (Y (3G (X,y).
let a€& A be such that Be&a<a. From ArU%and 3.0.2 we dedu-
ce that

Am (Y X<a) (3))F (X,y)—> (3v)(V X<w) (Fy< V) (x,y).
Thus, there is a c€&A such that Am(¥Y X<aX(Jy<c)F (X,y).

We obtain B¥ (VY X<a)(Ay<c)g (x,y) by using A<B. Conse-
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quently, Br(3y<c)@(3,y). Let b€B be sueh that BFb<e &
& Cy('é',b). We have beR. By using the induction hypothesis

we obtain 4 # @(&,b) and, consequently, Aw(3 ) (a,y). The
induction step in question is proved. Now, we have £< B. A<A

result s from this and A< B immediately.

3.1.3. Proposition. Let AR U® . Then A has a cofinal
elementary extension iff A has a proper elementary extension
which is not an end-extension of A.

Proof. Let B be a proper elementary extension of A which
is not an end-extension. By using 3.1.1 we obtain that the

model in question is the 1.

3.2.0. Throughout this paragraph we shall work with a
countable language L (containing a binary predicate < ) and
with structures with the absolute equality only.

We shall give a necessary and sufficient condition for
the existence of a cofinal elementary extension of the medels
of the theory U(L),

Iet AL and let aeA. We put & = {beA;Al b<al.

3.2.1. Proposition. Let Am U, The model A has a Ac-ex—
tension which is not an end-extension iff there is an a€ A
such that 8 is infinite.

Proof. Assume that & is finite for each ae A. Let B be
a Ao-extension of A. let a€A and let be&B be sush that
Beb<a. Then B (3 x<a)(x = x) and consequently Am (I x <«
< a)(x = x). Thus, 840, We have A= (Y z<a)A{z = c; ceai.
We deduce Be(Yz<a)A {2z = ¢c;ced} and, consequently,

Bkb = ¢ for some ¢ ¢ &. The model B is and end-extension ef A.

Assume that there exists an a €A such that @ is infinite.
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let p(x) = {xkc; ceBfu{x<ca?. Then p(x) is a set of

L(& u £ a})-formulas which is consistent with the theory of
(A,y)“a“h’. Then there is an elementary extension B, A<B,
such that p(x) is realized in (B’y)ﬂauhf' Suppese b6 B re-
alizes p(x) in (B,y)y‘au&;. We have Bieb<a., Assume be A,
Then A= b<a and, consequently, Ak b = ¢ for some c €& 8, which

is a contradietion. The proof is finished.

3.2.2. Theorem. Let A be a model of U®, Then A has a
cofinal elementary extension iff then there exists an a¢ A

such that & is infinite.

3.2.3. Corollary. Let A be a countable model of U% and
let a€ A be such that & is infinite. Then there exists an ele-
mentary end-extension of A and there exists a cofinal elemen-
tary extension of A,

Proof. The existence of a cofinal elementary extension
follows from the previous theorem and the existence of an

elementary end-extension follews from the theorem 2.4 in [3).

3.3.0. Let L be a language containing a bimary predica-
te<. Let T be a theory in L and let T be stronger than U%(L).
Writing T instead of U® in the theorems 3.0.0, 3.1.2 and in
the corollary 3.0.3 we obtain valid proposition.

Moreover, let L be countale. Restricting ourselves to
models with the absolute equality we obtain true assertions

writing T instead of U®in 3.2.2 and 3.2.3.

3.4,0. We shall present an important extension of U,

Let L be a language containing the binary predicate <
and the constant O. We dennte by S (more precisely by S(L))
the following theory in L:

< is an antisymmetric linear ordering with the least
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element O and without the 1last element, satisfying

moreover x40 — (Iy< x)(V z<x)(z<yv z=y).

Obviously, S(L) is stronger than U(L). We define st
am S® similarly as U™ and U% (i.e, " = SUH(TT,) and §% =
= SUH(Fm)).

Let ¢ be an I-formula and let x have a free occur-
rence in ¢ . We denote by Min(g (x)) the general closure of
the formula

(Fx)gx)— (AxX)(@X)& (Yy<x)1 ¢ (¥)).

Writing Min(@ ) we mean Min(g (x)) with some x having a free
occurrence in & .

In L3] we proved

(a) Su Min(Fm) = S%UMin(4 )
Obviously, U®(L)<S9(L).
Thus, for the theories from (A ) we can obtain the results

indicated in 3.3.0.

§ 4, Special extension of the theory U. We shall pre-

sent the language L and the theory T in L stronger than U(L)
with the following property: if AT, B U and B is a cofi-
nal Ao-extehsion of A then B is an elementary extension of

A.

4.0.0. We say that the formula 1%(x,y,z) of the lan-
guage L with exactly three free variables x,y,z is a univer-

sal = -selector in the theory T in L, iff

(a) & is a Sl-formule of the language L,
(b) Tv(¥x,y)(3!2)1x,y,2),
(¢) for each fcrmula ¢ of the Language L,
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THge.c {(V x<u)(I y)@ (x,5)=> (I wWI(V x<u)(V 2) (H(w,x,2)>
-2 @(x,z))

(where u,w do not occur in q,dﬂ ).

The theory T in L has a universal 3 -selector if there exists

a universal = -selector in T.

4.0,1. Let L be a language containing a bimary predi-
cate < and a constant N for eachne @ .
We denote by V the schema

(¥x)(x<T—>x =0v..ovVX=1n-1); N @&.

4.0.2, Proposition. ILet T be a theory in L and let

be a universal = -selector in T.

(1) Let T contain the schema V . Then, for each n,
Ti—(Vxo,...,ﬁ)(.ﬂw)‘,‘/é\wﬁ(w,i,xi).
(2) 1Iet T be stronger than U%(L). Then T is stronger
than U9 (L).
Proof. (1) follows immediately from (c¢) in 4.0.0 with
q(x,y):{}w (x = Iy = x;) by using the schema v.
(2) et ¢(x,y) be a formula. We have
Trg.c.((¥ x<euw)(3y) @(x,y) = (Iw) (¥ x<u)(V 2z) (F(w,x,z)-»
—>@lx,z)).
In [3] we proved that U° is equivalent to Uu H(E.l). Thus
TH(Y w (¥ x<u)(32)P(w,x,2) > (3 v)(Vx<u)(3 s<v)dw,
x,2)).
From this we deduce that

THg.c.((Vx=<u)(Iy)g(x,y)—=>(Iw)V x<u)(Fy<wlg(x,y)).

4.0.3. Corollary. Let T be a theory in L stronger than
19(L)u Min(A ) and let T have a universal = -selector. Then

" is stronger than U(L)UMin(Fm).
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Proof. In [3] we proved that U% (L) vMin( 4,) is stron-
ger than U(L)y Min(Fm), From 4.0.1, (2) we deduce that T is
stronger than U¥(L)y Min( A ) and, consequently, T is stron-
ger than U(L)u Min(Fm).

4.0.4., Theorem. Let T be a theory in L stronger than
U°(L)U V and let T have a universal XE-selector. Let AmT,
BmU and let B be a cofinal extension of A. Then the state-
ments are equivalent:

(1) B is a A -extension of A,

(2) B is an elementary extension of A,

Proof. let & be a universal = -selector in T. By using

3.0.1 we obtain Ac, B. From this we deduce

Bhe(Vx ,0.0,%,)(3 V)L/‘\”’z"(v,'i',xi)
for each n¢ @,
We obtain also B (Y x,y)(312)(x,y,2).
We denote by LF the language Lu4F3j, where F is a new
binary function symbol. Let U‘F be the following theory in LF:

Uuf{(Vx,y)(F 12)B(x,y,2)} v F(x,y) = zmd(x,y,z)§v
Vi(¥x,,.e0,x,)(3 V)i./&\m P (v,i,x); newil.

We have A.-.nr, BI-UF.

Let q(F(xl,yl),...,xl,yl,...,ﬁ') be a formula of the
language LF. Then
U @ (Flxq,37) 00 eXys¥ysee sz (¥ 29,0000 (89 (xy,57,2,)4&
eoo > @zy,000,X7,¥75000,8))
Consequently, for each nZ1l, each Tl’n-formula of the langua-
ge LF is equivalent in UFto a Wn-formula of the language L.
We deduce from this that A€, B for the language ¥, Assume
Ac, B for the language LF with some nZ 2. We shall orove
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A=n+1 B for the language LF. Let ye Tfn+1(A) be a sentence
of the language Lr(A). We may suppose that g has the form
(Vx)(3 y) @(x,y), where @(x,y) is a T _,-formuk of the
language LF(A) with exactly two free variables x,y. This fol-
lows from the fact that UF enables to contract quantifiers,
i.e. if Qis V or 3 then i (Qxgyeee Xy )@ (Xg500e,%)) =
!(Qx)Q(F(x,‘(-)),...,l"‘(x,ﬁ)) holds for all n and all I’ -formu-
la g .To finish the proof we must show that
Am (Y x)(3y)q implies Be(Vx)(3y)y .

Assume Am (¥ x)(3y)@(x,y). Let a€A. Then Ak (¥ x<a)(3ylgy .
Thus, there is an element c€ A such that Aps(V x<a) @ (x,
F(e,x)) holds. The last formula is a Tl -sentence of the lan-
guage LF(A) and, consequently, holds in B. We deduce

Bm(Y x)(3y)g from the fact that A is cofinal in B.

4.0.5. Corollary. Let T be as in 4.0.4. Let AwT, BmU
and let A €o B. Then the structure ﬂ is an elementary exten-

sion of A.

4.1.0. Let L be the language of the Zermelo-Fraenkel
set theory ZF (Peano arithmetic P resp.). We have that ZF is
stronger than U® (L) (P is stronger than S%(L) resp.). Thus,
by using 3.3.0 we can immediately deduce the variant of the
results presented for the theory ZF (P resp.). For example:
Let A, B be models of ZF (P resp.) and let B be a cofinal Ao"

extension of A. Then A<B,

4.1,1. The following facts are well-known:
(1) the theory P can be viewed as the extension of S°0 ¥V and
P has a universal = -selector,

(2) each extension of a model of P, which is a model of P,
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is a A -extension.
Thus, from this and by using 4.0.4 we can d educe the

following known proposition (see also [1]):
Let AP, BES and let B be a cofinal extension of A.

Then the following are equivalent:

(1) Ac, B
(2) A<B
(3) BpEP.
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