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ROTE ON THE DIFFERENTIAL EQUATION
F(t, y(t)), y(a(t)), y'(t)) =

Bogdan RZEPECKI, Poznan

Abstract: We present a result on the existence, uni-
queness and continuous dependence on givem functions and
initial conditions of a solution for the differential equ-
ation with deviated argument F(f, y(t), y(h(t)), y “(t)) = o.
These facts are a consequence of an application of some fi-
xed-point theorem. This theorem generalizes the well-known
Banach principle and is connected with Bielecki’s method of
changing the norm.
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1. Let I =7[0,a], let (Rk, | +]) be a k-dimensional
Euclidean space and let C(I, Rk) denote the space of all
continuous functions from an interval I to Rk, with the
usual supremum metric.

By (PC) we shall denote the problem of finding the so-
lution of the differential equation with deviated argument

F(t,y(t), y((t)), y () =
(ef. £1]1,143,09]) satisfying the initial condition
y(0) =

where h:I —s I, F: IkaKkaT&k-—o Rk are continuous

functions, X e Rk and y(« ) denotes an unknown function such
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that y'e (I, R X).

In this note we present a result on the existence,
uniqueness and continudbus dependence on given functioms and
initial conditions of a solution for the (PC) problem. The-
se facts are a consequence of ah application of some theo-
rem (given in See. 2) of the type of Banach fixed-point

principle.

2. Let (E, Il «{l ) be a Banach space, let S be a nor-
mal cone in E (see e.g. [7]) and let =% denote the parti-
al order generated by the S. Suppose that X is a non-emp~
ty set and d::X>tX-—+ S is some function. Moreover, let us
put dp(x,y) = Ml dg(x,y) Wl for x, y in X.

The pair (X,dg) is called a generalized metric space
(7] (cf. also (33,[11]1) if for all x, y and z in X the fol-
lowing conditions are satisfied:

1° dg(x,y) = & if amd only if x =y (8 denotes the
zero of a space E);

2° dg(x,y) = dply,x);

3° dE(x,y)=£ dE(t,z) + dE(z,y).

If, further: every d; -Cauchy sequence in X is d;—con—

~p 0
(xn) in X, implies the existence of an element x,€ X such

+
vergent in X (i.e. lim dn(x_,x ) = O for a sequence
g -11,’1 B *pr¥%q q

. + .
that :n*ﬁﬁ» dg(x,,x,) = 0), then (X,dg) is called a comple-

te generalized metric space.

In this sectiom suppose we are given: A - an arbitra-
ry set, (X,dE) - a generalized metric space, L -~ a bounded
positive linear operator of E into itself with the spectral

radius r(L) less than one.
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We shall use the following

Lemma (cf. {6]). Let P, R be two transformations defin-
ed on the set A with the values in X and such that PLA] c
¢ R[A]. Suppose that R{A] is a complete geeralized metric
subspace of X, and dg(Px,Py)=% L(dg(Rx,Ry)) for all x, y in
A. Then:

(i) for every ue RLAJ] the set P [R_luJ contains only
one element (R_lu denotes the inverse image of u under R);

(ii) there exists a unique element g in R[ A] such
that P[R_1€J=§ , and every sequence of successive approx -
mations Upq = P[R__lunj (n =1,2,...) is d;-convergent tog;

(iii) Px = Rx for all x¢ R_lg;

(iv) if Px; = Rx; for i = 1,2, then Rx; = Rx,.
Proof. Fix u in R[ A]. Suppose that v; =P [R__lu] for
i =1,2. Then v; = Px;, where Rx; = u. Hence

dg(visVy) = Ap(Px,Pxy)=3 L(dg(Rx),Rx,)) = 6
and therefore v, = Vo

Let us put Fu = P{ R_jul for ue RLA). For u;e RCA]
(i =1,2) with x;¢ R_ju;, we have

dg(Fuy,Fu,) = dE(le,sz)é L(dg(Rxy,Rx,)) =

= L(dgluy,uy)).

1°Y2
Therefore, applying Theorem II.6.2 from {7, p. 94], we can
conclude the proof of (ii). Further, if ¢ € RLA] satisfies
(ii) and xeR_; § , then Rx = ¢ = F§ = PLR,§] = Px.

Now, we prove (iv). Let Px; = Rx; (i = 1,2) and Rx % Rx,.
Obviously, dg(Rxy,Rx,) =3 L(dp(Rx,,Rx,)) and -dg (Rx, ,Rx5) ¢ S.
Consequently, by Stedenko theorem [7, th. II.5.4, p.81]we
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obtain r(L)2 1. This contradiction completes the proof.

We shall be using the notations of &£ ¥-space, the
g ¥-product of Y *-spaces and a continuous mapping of £* -
space into éﬂ*‘-space (see e.g. [ 81]).

Proposition (of Banach type). Let B be an &£*-space
and let L, A, (X,dE) be as above. Suppose that Q, T are two
transformations defined on the set Ax B with the values in
X such that for all y in B:

(J) 4Q(x,y):ixeAlc {T(x,y):xeA} and {T(x,y):xeA}
is a complete generalized metric subspace of X;

(3d) dE(Q(xl,y), Q(xz,y))4 L(dE(T(xl,y), T(xz,y)))
for every x;, X, in A;

(jjj) the mapping T(e ,y) is one-to-one on A.

Then there exists a unique function ® :B—> A such
that Q(® (y),y) = T(@(y),y) for all y in B. Moreover, if
for every fixed x in A the functions Q(x,. ), T(x, . ) maps
continuously &*-space B into a metric space (X,d;), then
the functions T(g (s ), ¢ ), Qg (s ), s ) are continuous
from B into (X,d;).

Proof. Iet us fix y in B and put Px = Q(x,y), Rx =
= T(x,y) for x in A. For P and R all the conditions of our
Lemma are satisfied. Therefore, by conditions (jjj), there
exists exactly one element @(y) in A such that
U (y),y) = M (y),y).

Now, we consider the mapping y +—% ¢ (y). Suppose that
(y,) is & sequence in B cenverging to y,, and Q(x, ),

T(x, s ) (x is fixed in A) are continuous on B. Let € > O

be such that r(L) + € < 1. Further, let us denote by Il « “8
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the norm equivalent to W « Il such that lLlee r(L) + ¢
(see [7, p. 151) ( |L|e is the norm of operator L generat-

ed by “'“6 ).

We have
AT (3,),¥y) s (@ (7y)s¥,)) = dpQle (y,),y,),
WU (y0)47,)) B Lldg(T(@ (v),¥,), Ty, )syy))) +

+ dgQle (v )syy)y Uy )yy,)) <
= (g (Tl (y)yyp)s Tl (¥ )yy))) + Lap(T( o (yy),yy ),
T(Plyy)syy))) + agQle (v, ),y,), Ue (y),y,)),

hence

1 ag(T(e (yy)syy)y Tl (75)535)) - Ldg(T(g (y,),y,),

T(@ (y5)s7) ) Mg € MALE o ap(T(e(yy),yy,), M@(y,),
vl + M ag(Qle (v )yy)s Qo v )y M ilg

where M is some constant. Therefore

Nag(T(e (v,)47,)s M@y )y N2 I a (T(cp(yn),yn),
T(P (3o)5¥,)) = LUAR(T( (y,),5,), T(@ (v )uy I N

* LLh e Nag(T(eyy)uyy)s TP yy)y ) ige ML

. |\dE(T(g>(yo>,yn), P (36)sy ) g + Mlldg(Qly (v,),y,),

Q(ga(yo),yo))lls + (r(L) +g) o |l Ap(T( g (y,)yy,), (P (y,),

¥e)) "E and consequently

Wlit’nv“dE(T(Cf(yn),yn), TP (yy)oyo g € (x(L) + &) o

'ml}’m”“ dE(T(q (yn),yn), T(gp(yo),yo)) “&

Since r(L) + £ <1, so

n
o

mlj'm’o “dE(T( @y )syy), My (yo),yo)) IIe

which completes the proof.
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This Proposition generalizes the well-known Banach fix-
ed-point principle and is connected with the Bielecki’s riet-
hod [2] of changing the norm in the theory of differential
equations. If we put above: E = lRl, S =[0,00), 0£k<1 and
Ix =kex for xe lRl, we get the result from [10].

Note, finally, that [5] a non-negative and non-zero ma-
trix M = [aij] (1£i, j£k) has the spectral radius r(M)

less than one if and only if

l—all = Byp eeeen 'ali

- 85y 1-&22 secee - a5
>0

- a9 =85 eeeen l-aii

for all 1 = 1,2,...,k. Let us remark that there exists a po-

sitive constant Po such that r(pe M)< 1 for every O< P£D,-

3. Let us denote:

by éo ~ the space of all continuous functions from I
into I, with the usual supremum metric ® 3

by § ~ the some non-empty subspace of Qo

by % - the set of all continuous functioms F = (f
...,fk) from Ikax ]R,kx ]Rk into Rk

100
satisfying the fol-
lowing conditions: .

lwi - Wl + (u,i(fi(t,u,v,w) - fi'it,u,v,W)) “a‘-?‘i'i-j ' WJ - le,
lfi(t,u,v,w) - fi(t,ﬂ,v,w)\ 50.24 Mij“ uj - -d,]‘ + ‘V‘j - VJ‘)
(1 =1,2,...,k)

for all tel and u = (Up,eee, ), T = (Hl,...,ﬁk), v o= (V...

ceesVi )y T 5 (Fyeeey W)y W= (wyyeee,w ), W= (Wy,..0,W) in
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Iﬁ.k’ where (“'i* o, Mijzo' Nijzo (1¢i, j£Xk) are con-
stants.

In the sequel we shall deal with the set # as an &L* -
space endowed with the almost uniform convergence. Moreover,
T d x Rk considered as an £¥-prod-st of the spaces F ,
®$ and Rk.

It is easy to verity that (PC) problem is equivalent

to the equation
(+) F(t,X + j;t z(s)ds, X + J;Mt)z(s)ds, z(t)) = 0.

In particular, if zeC(I,Rk) is a solution of (+) then the
function t — X + J;t z(s8)ds is a solution of (PC). We
shall prove the following

Theorem. Iet 8 sup (h(t) - t)< ® . Suppose that
- he‘g teg P

there exists a constant p» O such that the matrix

1

(%) [NijJ +p (1 + exp(p:‘;‘fn‘zp° te;z% (J(t) = t)))e

* Dl nij:{ (1£i, jék)

has spectral radius less than 1. Then, for an arbitrary F e
€«¥ ,hed and X € R¥ there exists a unique function
y(F,h,X)(' ) satisfying the (PC) problem on I. Moreover, the
function
(F,0,X) — 3(p,n,x)

maps continuously '-'f,*-space Fxd = RY into C(I,'Rk).

Proof. Iet X denote the set of all continuows func-
tions from I to R X. Let us put: E = mk, S ={(qysee-yq)eE
€ R¥: gz 0 for 16¢iék}. Obviousty, X ¥ for X =
= (XpyeeerX), T = (Fp,ee0,y) in R " means x; & y; for eve-

ry i = 1,2,...,k. In £ we define the distance functions dg,
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d;: for z = (zl,...,zk), w = (Wy,e.0,w) in X we put
dE(z,w) = (@ (zl,wl), gb(zz,wz),..., ;o(zk,wk))
and d;(z,w) = bagz,w 1 .

™o (:E,dg) is a complete generalized metric space.
et us put B =Fx P x Rk. For y = (yl,...,yk)ex,
F= (fl,...,fk) ¢e¥ ,hed and X e R we define on I:
Ti(y,(F,h,X))(t) =y; (t) « exp(-pt),

t
Q 7, (Fyn, X0 () = (yy () + @y« £3(4,X+ [ y(s)ds,

X+ J;“""y(s)ds, 7())) + exp(-pt)

(v, (F,h,X)) (t)

(T4 (7, (F,0, X)) (£), .00, T, (7, 6F,0, X)) (1))

Q(y,(F,h,X))(t)

(Q (y, (F,h, X)) (t),..0,Q (¥, (F,h,X))(2)).
Obviously, T and Q map the set ¥ x B into 3f and
Qy, )iy e B3I Ty, )iy e X} ,{T(y,q )iy e X} = &

for each 7 € B.

Denote by L a linear operator generated by the matrix
(). Let us fix 7 = (F,h,X)e B, where F = (£, ..., )«
First, observe that the mapping T(. ,11') is one-to-one on
¥ . Further, for 1£ick, tel and z = (zl,...,zk), w =
= (wl,...,wk) in

[Qi(z"'l J(t) - Q(w,m)(t)]) & (5.§"| Kij \ zj(t) - wj(i,)l +
o t
+ l‘(‘lil'r??ld MiJ ‘fo ‘ZJ(S) - wj(s)\ds +
AR
* bl ‘:,.%4 Mg J

Jd Vo
I
. exp(—pt)bég.a Nij' @(Tj(z,n), Tj(w"’l.)) +

lzj(s) - wj(s)\ ds) »
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\1 +) .
+ lea ' - exp(=pt) « ( j; ePPas + J;’u eP%as)

%
. '§4 A @(Tj(z,vz), Tj(w,n)) &

. -
.3 (N +op 11 + exp(pC)) + |y le My ) e @(Ti(z,y),
Tj(w,n)),
where C =9\.sll% tsg% (h(t) - t). Hence dE(Q(z,n), Qw, 5 )=}

= L(T(z,7), T(w,n)) for 7 € Band z, w € & .
Fix y in & . Let %, = (F,h ,X )eB (mn=0,1,...),

(),

where Fp = (f&m),...,fl((m)) and X, = (xg_m),---» For

1£i4£X n21 and teI, we obtain
)(t) )(t) Lo u el -
193y 900 (8) = Qi (ry (B 1 & |yl e oy My 5205

f (4) A (t)
(o) ]
- x§o01 S \faw v;(s)ds -_[o yj(S)ds‘lﬂ) +

(n) t 3
+ l(“'il'f‘épl 2™ (e,x + fo y(s)ds, X, +_f; y(s)as,y(t))-
(0) ¢ n, (4)
- 2070, X +J; y(s)ds, X, +fD y(8)as, y(t)|
hence

VagQly,m ), Qly, M)l —> 0 as n—p o0
if mlizgo ix -xt =0, nin @(hy,h ) = 0 and m}’ig F, = F,
almost uniformly. Finally, Q(y, s ) is continuous from B into
(% ,dp).

Consequently, the Proposition given in Sec. 2 is applic-
able to the mapping T and Q. Hence there exists a unique con-
tinuous function ¢ :B—> C(I,Rk) such that @ (7 ) (n e B)
satisfies the equation (+) on I. This completes the proof of

our theorem.

Remark. Sunpose that for each h € § we have: h(t) &t

- 635 -



N C= ) -
on I, Then &3‘\18 R (h(t) - t)4 0, and therefore
exp(pC)& 1 for every p>0. Consequently, there exists p>Q
such that the matrix (% ) has spectral radius less than 1 if
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