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COMMDiNTATlONBS MATHiMATICAl UNI?IBSIÍAT1S CAHOMNA1 

19,3 (1978) 

ON THE POINTS OF MULTIVALUEDN1SS OF MiTIHC PBOJICf IONS 

IN SWkMBW BANACH SPACES 

Luděk ZAJÍČEK, Praha 

Abstract: Given a real Banach space X and a nonem­
pty subset Me X we consider the set Aj| of all points of 

multivaluedness ef the metric projection on M. We prove 
that if X is separable and strictly convex, then Ag can be 
covered by eountably many of Lipsehitz hypersurfaees. In 

particular, A-g is a set of the first category and of mea­

sure zero for any Gaussian measure on X. 
Key words: Multivaluedness of metric projections, se­

parable strictly convex Banaeh space, Lipsehitz hypersurfa­
ce, small sets in Banach spaces. 

AMS: Pruaary 41A65 

Secondary 46B99 

!• Introduction* We will consider a real Banaeh spa­

ce X and a non-empty subset McX. For x#X denote by %Cx) 

the distance from the point x to the set M. The metric pro­

jection %(3c) ©a the set M is defined as the (possibly) 

multivalued operator %(x) =4yftM; llx-yll = dM(x)f. Of cou­

rse, it is possible that PM(x) * 0 for some x. The set ©f 

all x for which 3?j|(x) contains at least two points will be 

denoted by Ag« 

In some Banach spaces the set A-g is always a ,,smallw 

set. Brdds £23 investigated Ajg in the case of n-dimensional 
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Euclidean space X. He proved that in this case A^ has 

6f-finite (n - 1)-dimensional Hausdorff measure. SteHkin 

L7J investigated A^ in general spaces. He proved, for ex­

ample, that in any locally uniformly convex Banach space 

X the set Aj* is always of the first category. Note also 

that in [7J Stefckin proved that in any normed linear spa­

ce X with strictly convex norm the complement td Aj» is den­

se in X. 

In the present article we will consider the case of 

a separable real Banach space X only. It is the simple 

fact [7] that if the norm of X is not strictly convex, 

then there exists a hyperplane If with ^ s I and therefore 

A., is not small in any sense. We prove in the present ar­

ticle that if the norm of a separable Banach space X is 

strictly convex, then Aj| can be covered by countably many 

Lipschitz hypersurfaces (Theorem 1). Since any Mpschitz 

hyper surf ace (see Definition 1 below) is obviously a no­

where dense set, we have that A., is a set of the first 

category. If X is an n-dimensional Banach space, then our 

result implies that A„ is of € -finite (n - l)-dimensio-

nal Hausdorff measure. Bids result generalizes the IrdOs* 

theorem stated above. In the infinite-dimensional case 

it is not difficult to deduce from our result that A,.- is 

contained in a Haar zero set in the sense of Christensen 

£4]. We can use for this purpose the construction from 

Theorem 1 of Aronszajn 111 or Theorem 7.2 of Qiristensen 

£4J . It is interesting to compare our result concern-
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ing Haar zero sets with a note of Christens en f 43, p. 124. 

We shall also prove a more strong result which asserts 

that Aj| is of measure zero for any Gaussian measure fa 

in X (we consider Gaussian measures such that M*(G) * 0 

for any nonempty open subset G of X) • 

If in addition the norm of X is smooth, then we ob­

tain Bieorem 2 from which it follows that k** belongs to 

the Aronszahn's system of small sets J%1° (defined in 

111). We are not able to prove that A« belongs to 41° in 

general separable strictly convex Banach spaces. 

2. Notationsf definitions and lemmas. If f is real-

valued function defined in a Banach space X, a € X and 

o 4. v 6 X, then we put 

-Ov(f,a) = lim 1/h (f(a+hv) - f(a)). 
v * h-^0 •+ 

If we work in a metric space, then by U^*(a) we mean 

the open of-neighbourhood of a* point a. 

If x, y are points of a Banach space, then by xfy 

we mean the closed line segment joining these points. 

!Ehe symbol H denotes the set of real numbers. 

For the symbols % ( x ) , % ( ^ ) | A^ see Introduction. 

Definition 1 ([81). Let -X be a Banach space and 

o#»v«X. We shall say that AcX is a Lipsehitz hypersurface 

associated with v if there exists a topological complement 
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Z of the one-dimenaional space ? » Lin {Y% and a Lip*-

schitz mapping f:Z—1»? auch that A « Cz •*» f(z)fze2.J . 

Definition 2. Let X be a Banach space, x e X and McX. 

Then we denote by contg (Mtx) the set of all o#» v c X with 

the following property: Biere exist sequences (^^fLit xi f e 

C M and C A ^ ) ^ , A £ > 0 such that A ^ — * 0 and 1/A.^ 0x4-

• A^v - .s^ll—P 0. 

Note, fhe geometrical sense of the preceding defini­

tion is clear. It is essentially a natural generalization 

of the well-known notion of the contingent of a set M in a 

point x defined in "Euclidean spaces. We shall use the no­

tion contg (M,x) only in the connection with the following 

simple lemma which is an easy generalization of the well-

known proposition concerning contingents in fuclidean spaces 

(cf.t51f Lemma 3*1, p» 264). In this point we follow in the 

present article the method of I.rdo's £23. 

.Lemma 1. Let M be a subset of a Banach space X and 

o + v e X a vector. Then the set A of all points xfcX for which 

• ̂  contg (Mfx) can be covered by countably many Lipschitz hy­

per surf aces associated with v. 

Proof. Put ? * Lin 4vi . Let Z be a topological comp­

lement of ?. Denote by 0j (reap. ar**) ^ e projection of X 

on ? (resp. Z) parallel to Z (reap. ?). If x i i it is easy 

to see that there exists a positive integer n such that 

(1) ll^z(y-x)ll > 1/n II #v(y-x) II whenever y£ M and 

^(y-x) = t v for some 0<t^l/n. 
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Let .4^ be the set of all points x«A for which (1) 

holds. Ohoose further for each n a sequence of sets 

•C A^^I^ , such that 4^ » U -t^ and l»3T?Cy-x) II < 1/n It vfl 
"* m^l 

oo 
whenever x 6 JL^ and y e K - Obviously A « UJ A , 

nfm
=sl 

Let now n, m be fixed and xf y be distinct elements of 

A . Without loss of generality we can suppose that 

srv(y-x) =- t-v for t20 and therefore by (1) 
»*rv(y) - ^v(x)ll < n llsr^y) - jrz,(x)H . 

Thus the set «f (3rz(x)f #v(x)) | ̂ ^^j^l is t n e graph of a 

Lipschitz mapping f :Z—t* ¥ defined on a subset of Z. Since 

any Lipschitz function defined on a subset of a metric spa­

ce has a Lipschitz extension on the whole space, we obtain 

that JL» is a subset of a Lipschitz hypersurface associated 

with v. The proof is complete. 

Lemma 2. Let v be a continuous convex function de f in ­

ed on a Banach space X, x e X and o*f*veX. Then for any e >• 0 

there ex is t s GT->> 0 such that 

-D - V(f fx) - c < D v ( f f y)^D v ( f f x) • c 

for any y e U ^ (x) (flf-neighbourhood of x). 

Proof: Suppose that there exists e > 0 and a sequen­
ce y^—• x such that D Cffx) + e <^Dw(ffy^). Then for any 

wn v * v ,wn *̂ 

t>0 we have 1/t (f(yn+tv) - f(y^))** D^(f,x) + € . % the 

continuity of f we have 1/t (f(x+tv) - f(x)2Dv(f,x) • & 

for any t>0 and this is a contradiction. Thus "the right 

inequality" is proved. "The left inequality" follows from 

the right one in which we replace v by -v. 
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.Lemma 3 , Let f be a continuous function defined on 

m Banach space X, 04 ve X, xe X, a>*0 and Ke 1. Let 

D (f tz)< K for ai^r ze x|x*av (see Notations). Then f(x+av) -

- f(x)-<aK. 

Proof: If we define git) = f(x+vt) for tc R we see 

that Lemma is an immediate consequence of well known theo­

rems from the real analysis (e.g. of Theorem 7.2 or Theo­

rem 7.3 from t53, p# 204). 

3. Theorems 

Theorem 1. Let X be a separable Banach space with m 

strictly convex norm p and let McX. Let A^ be the set of 

points of multivaluedness of the metric projection Pj,. Then 

A*, can be covered ty eountably many Lipsehitz hypersurfaces. 

In particular, A*| is at set of the first category and 

of measure zero for any Gaussian measure p , in X (with 

supp $L = X). Consequently A-̂  is a subset of a Haar zero set 

in the sense of Chris tens en. 

Proof; Recall that p(x) =11x11 . For each *-eKi choose 

two distinct points y«.(x)f 3f2
(x) ^rom

 ^ M ( X ) # ^n^ z-,(x) * 

= ŷ f̂x) - xt z 2
( x ) s 3^2(x) " x* v ( x ) s ^ 2 ( x ) ~ y l ( x ) s 

* Zgfx) • zi^x)« Since p(z^(x)) =- p^gCx)) and p is strict­

ly convex there exists h(x)>0 such that 

(2) Dv(x)(p,z1(x)) + h(x)<-B-v(x)(pfz2(x)). 

Qioose ly Lemma 2 ^(x)»0 so small that 

Dv(x)(p»z)<1)v(x)Cp'zl(x)) + 1/3 hix) fQr mw z€W^{x)izlix)) 

and -D_ /^(PfZ) > -D-vfxj(ptz2(x)) - 1/3 h(x) for auy 
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Z 6%u ) U 2 ( x ) )* 
The set C * -i(z.,(x), z2(x))jj xeA-jl is a subset of the se­

parable metric space Ix X. Therefore there exists a sequence 

' x i ' i - l c A M s t l c J l t J l a t 

C C Si °n(xO (zi (xi ) )'<u^ i)
(z2 (xi ) )-

Let A^ be the set of all points x^A*, for which 

(-l(x)» z2 ( x ) ) e\(x i)
( zl ( xi ) ) >'\( X i)

( z2 ( xi ) )-

Then L s U A. and it is sufficient to prove that each set 

A. can be covered by countably many Lipschitz hypar«urfaces. 

By Lemma 1 it is sufficient to prove that for any i and for 

any xcA. we have ~v(x.)^ contg (-̂ it̂ ). For this purpose fix 

i and suppose that there exists x€A. such that 

(3) -v(xi)€ contg (A^,x). 

Put v = v ( x i ) f z1
 s z 1 ( x i ) , z 2 = z 2 ( x i ) , h = h ( x i ) , % « 

- ^ ( x . . ) . By (3) we can choose a > 0 and x* € A.̂  such tha t 

II av II < n% and 

(4) tl x* - y 11 < min ( ^ ,1/6 ah) , where y s x - av. 

Now we shall find a lower and an upper bound for dyr(x* ) s 

* llz2(x* )ll « llZl(x*)lt . 

Obviously !lz2(x* )ll « lly2,(x* ) - y + y - ^ ^ k 

Z I y2(x* ) - ytt - IIy - x*l and By2(x* ) - y I « 

» ll(y2(x*) - x) + (x - y)ll . Since y2(x* ) - x* a z^** ) * 

4 U^ (z2) and ||x* - x II < 2 ^ , we have that y2(x* ) «-. 
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- n U 3 (z2) and therefore Dv(pty2(x* )-x) >-D-v(ptz2) -

- 1/3 h. Since (x-y) « avf we have 

«(y2(x*) - x) + (x-y) I £ lly2(x*) - x)| + a(-D-v(pfa2) -

- 1/3 h ) . Since y 2 ( x * )c Mf we haire l l y 2 (x* ) - x II S dM(x) 

and therefore 

(5) d M (x* )£d M (x ) - a D - v (p ,z 2 ) - 1/3 ah - lly - x * » > 

>dM(x) - a D-V(p,z2) - 1/2 ah. 

On the other hand f 

llz1Cx,*)» »|ly1(x*) - x*lAlly1(x) - x* II -

* IfCy^xJ-x) + *x-y) + (y-x*)IU llz1(x) + avli + ly - x*I 

Since II av II *: ̂  and z1(x)c V^ (a^t we have 

z^íx), ̂ ( X ) + ^^%,-Cz^) 

and therefore for any jm z1(x)f z-jCx) + av 

yp>y)<Pv(Pt--1) * i/3 *• 

f.roii Lemma 3 i t follows tha t 

U z ^ x ) + av t ^ dM(x) + a(Dv(p,z1) + 1/3 h) 

and therefore by (4) 

(6) dM(x*)<dM(x) + a Dv(p,z1) + 1/3 ah +Uy-x*l< 

< dM(x) + a Dv(pfz1) + 1/2 ah. 

From (5) and (6) we obtain that -D-Jtf(p>z2)< Dv(pfz1) + h 

and thia is a contradiction with (2). 

Let now ̂  be a Gaussian measure in X such that 

supp (U. » X. By H. Sato [6 J ̂  can be considered as an ab-
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stract Wiener measure. Therefore by L. Gross C33 there ex­

ists a dense subset H e x such that (A, is equivalent with any 

measure ^ , hfcH (̂ jj(̂ ) s ^(h+A)). It is easy to prove 

that for any Lipsehitz hypersurface L there exist© h€H 

such that L is a Lipsehitz hypersurface associated with h 

and therefore $L(L) = 0. Thus we have ^(Aj^) s 0. From this 

assertion we immediately obtain that A-, is a subset of a 

Haar zero set in the sense of Christensen (it is easy to gi­

ve a direct proof of this fact, see Introduction). 

Corollary. Let X be an n-dimensional Banach space with 

a strictly convex norm. Then JL. is always a set of €-finite 

(n-1)-dimensional Hausdorff measure. 

Theorem 2. Let X be a separable Banach space with a 

norm p which is strictly convex and smooth. Let M be a sub­

set of X and let l30nss;i
 D© * complete sequence of nonzero 

vectors in X. Then k^ c \J I. where each L^ is a Lip-
nfm

sl 
schitz hypersurface associated with xn# 

In particular, Aj| belongs to the Aronszajn'e class ^i°. 

Proof: The proof of Theorem 1 works if we for x#Ajg 

instead of v(x) = y 2 ^ "" Vi^ define v(x) as a vector of 

the form x^ or -x^ for which Dv^^(p,z2(x))<Dv^xj(plz:i(x)). 

The existence of a such vector v(x) follows from the proper­

ties of the norm p. In fact, if no such v(x) exists, then 

B (pjZ^tx)) s Ђ (pjZ^íx)) for any n, 
я, n 

xGO 
and from the smoothness of p and completeness of (-^^si 

we obtain 
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\(x)-zxU){p>z2(>x)) = \(x)-z1(x)^'zl(-x))' 

This is a contradiction with the strict convexity of p. 

The consequence concerning the class -24- is obvious. 

Note: When the present article was written we beca­

me acquainted with the paper "S.V. Konjagin, Approksima-

tivnye svojstva proizvolnych mnoilestv v Banachovych pro-

stranstvaeh, Dokl. Akad. Nauk SSSB 239(1978), No 2f 261-

264.M The results stated in that paper overlap with our 

results. In Bieorem 1 of that paper the following proposi­

tion is contained: If X is strictly convex n-dimensionad 

Bamach space, then .4j| can becovered by countably many of 

(n - 1)-dimensional surfaces with finite (n - l)-dimensio-

nal Hausdorff measure. Theorem 4 asserts that in any stric­

tly convex separable Banach space the set A« is always a 

set of the first category. In the Konjagin's paper a num­

ber of further results is contained. In particular, the 

points of JL* are classified by degree of singularity and 

also descriptive properties of Aj. are investigated. No re­

sults concerning measure or the possibility of the cover­

ing of Aj| by surfaces in infinite-dimensional spaces are 

stated in the Konjagin's paper. 
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