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ON THE POINTS OF MULTIVALUEDNESS OF METRIC PROJECTIONS
IN SEPARABLE BANACH SPACES

Iud&k ZAJICEK, Praha

Abstract: Given a real Banach space X and a nonem-
pty subset Mc X we consider the set Au of all points of

multivaluedness ef the metric projection on M. We prove
that if X is separable and strictly convex, then Ay can be

eovered by countably meny of Lipschitz hypersurfaces. In
particular, Ay is a set of the first category and of mea-

sure zero for any Gaussian measure on X,

Key words: Multivaluedness of metrie projections, se-
parable strictly convex Banach space, Lipschitz hypersurfa-
ce, small sets in Banach spaces.

AMS: Primary 41A65

Secondary 46B99

1. Introduction. We will consider a real Banach Spa~-
ce X and a non-empty subset Mc X. For xe¢X denote by dy(x)
the distance from the point x to the set M. mé metrie pro-
Jeetion Py(x) on the set M is defined as the (possibly)
multivalued operator Py(x) ={yeM; lix-yll = dy(x)}. Of cou-
rse, it is possible that Pu(x) = @ for some x. The set of
all x fer which Pm(x) contains at least two points will be
denoted by A“.

In some Banach spaces the set Ay is always a "small"

set. Erd¥s [2] investigated Ay in the case of n-dimensional
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Euclidean space X. He proved that in this case ‘m has
. 6 -finite (n - 1)-dimensional Hausdorff measure. Stelkin
[7) investigated Am in general spaces. He proved, for ex-
ample, that in any locally uniformly convex Banach space

X the set Au is always of the first category. Note also
that in [7] Stedkin proved that in any normed linear spa-
ce X with strictly convex norm the complement to A“ is den-

se in X.

In the present article we will consider the case of
& separable real Banach space X only. It is the simple
fact [7] that if the norm of X is not strictly convex,
then there exists a hyperplane M with AM = X and therefore
Au is not small in any sense, We prove in the present ar-
ticle that if the norm of a separable Banach space X is .
strictly convex, then Ay can be covered by countably many
Lipschitz hypersurfaces (Theorem 1). Since any Lipschitz
hypersurface (see Definition 1 below) is obviously a no-
where dense set, we have that Ay is a set of the first
category. If X is an n-dimensional Banach space, then our
result implies that Ay is of 6 ~finite (n - 1)-dimensio-
nal Heusdorff measure. This result generalizes the Erdds’
theorem stated above. In the infinite-dimensional case
it is not difficult to deduce from our result that Au is
contained in a Haar zero set in the sense of Christensen
[4]. We can use for this purpose the construction from
Theorem 1 of Aronszajn [1] or Theorem 7.2 of Christensen

[4] . It is interesting to compare our result concern-
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ing Haar zero sets with a note of Christensen [4], p. 124.
We shall also prove a more strong result which asserts
that Ay is of measure zero for any Gaussian measure (w
in X (we consider Gaussian measures such that (w(G) = Q

for any nonempty open subset G of X).

If in addition the norm of X is smooth, then we ob~
tain Theorem 2 from which it follows that AM belongs to
the Aronszahn’s system of small sets 2U° (defined in
[11). We are not able to prove that Ay belongs to A° in

general separable strictly convex Banach spaces.

2. Notations, definitions and lemmas. If f is real-

valued function defined in a Banach space X, a € X and
o4 v eX, then we put
D (f,a) = lim  1/h (f(a+hv) - £(a)).
h—»0_

If we work in a metric space, then by U (a) we mean
the open d -neighbourhood of & point a.

If x, y are points of a Banach space, then by X,y
we mean the closed line segment joining these points.

The symbol R denotes the set of real numb‘ers.

For the symbols dy(x), Py(x), Ay see Introduction.

Definition 1 ([81). Iet -X be a Banach space and
o+v ¢ X. We shall say that AcX is a Lipschitz hypersurface

associated with v if there exists a topological complement
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Z of the one-dimensional space V = Lin {v} and a Lip~
schitz mapping £:Z2 —> V such that A = {z + £(2),2e€Z} .

Definition 2. Ilet X be a Banach space, xe X and McX.
Then we denote by contg (M,x) the set of all o# Ve X with
the following property: There exist sequences (xi);’___l, x; €
€M and (.’Li);‘;l, 2A;>0 such that A;—> 0 and /A, IIx +
+ .7tiv -xl— 0.

Note. The geometrical sense of the preceding defini-
tion is clear. It is essentially a natural generalization
of the well-known notion of the contingent of a set M in a
point x defined in Euclidean spaces. We shall use the no-
tion contg (M,x) only in the connection with the following
simple lemma which is an easy generalization of the well=-
known proposition concerning contingents in Euclidean spaces
(cf.[5], Lemma 3.1, p. 264), In this point we follew in the
present article the method of Erdds [2],

Lemma 1. Let M be a subset of a Banach space X and
o#veX a vector. Then the set A of all points xe X for which
vé contg (M,x) can be covered by countably many Lipschitz hy-
persurfaces associated with v.

Proof, Put V = Lin{v} . Let Z be a topological comp-
lement of V. Denote by Ty (resp. arz) the projection of X
on V (resp. Z) parallel to Z (resp. V). If xe A it is easy

to see that there exists a positive integer n such that

(1) Nor,(y-x) > 1/n "m’v(y—x)“ whenever y¢ M and
7e(y-x) =t v for som 0<t<1l/n.
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Let A, be the set of all points xe A for which (1)

holds. Choose further for each n a sequence of sets
«©
{ 3® __ such. that = J and I (y-x)ll < 1/nllivl
Anm? m=1 Ay m=l*mn v

)
whenever xeA ~ and yeA . Obviously A = (O N

Let now n, m be fixed and x, -y be distinct elements of
A Without loss of generality we can suppose that

wy(y=x) = t-v for tZ0 and therefore by (1)

Harg@y) = 7o)l <n llwy(y) = 7zl .

Thus the set {(r;(x), Ty(x)); x6€ A '} is the graph of a

Lipschitz mapping f:Z—» V defined on a subset of Z. Since
any Lipschitz function defined on a subset of a metric spa-
ce has a Lipschitz extension on the whole space, we obtain

that %m is a subset of a Lipschitz hypersurface associated

with v. The proof is complete.

Lemma 2. Iet v be a continuous convex function defin-

ed on a Banach space X, xe X and o#% ve X. Then for any € > O
there exists o > 0 such that

-D_,(£,x) - e < D (f,y)< D (f,x) + ¢

for any ye Uy (x) (0 -neighbourhood of x).

Proof: Suppose that there exists € > O and a sequen-
ce y, —> x such that Dv(f,x) + e éDv(f,yn). Then for any
t>0 we have 1/t (f(y +tv) - £(y ))2D_(f,x) + € . By the
continuity of f we have 1/t (f(x+tv) - £(x)ZD_(f,x) + €
for any t>0 and this is a contradiction., Thus "the right
inequality" is proved. "The left inequality" follows from

the right one in which we replace v by =-v.
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Lemma 3. Let £ be a continuous function defined on
a Banach space X, o ve X, x€ X, a>0 and K€ R. Let
D (f,z)< K for any ze X,x¥av (see Notations). Then f(x+av) -
- f(x)<eakK.

Proof: If we define g(t) = f(x+vt) for te Rwe see
that Lemma is an immediate consequence of well known theo-
rems from the real analysis (e.g. of Theorem 7.2 or Theo-

rem 7.3 from (5], p. 204).

3. Theorems

Theorem 1. Let X be a separable Banach space with &
strictly convex norm p and let Mc X. Iet Ay be the set of
points of multivaluedness of the metric projection P,,. Then
4y can be covered ty countably many Lipschitz hypersurfaces,

In particular, Ay is a set of the first category and
of measure zero for any Gaussian measure w in X (with
supp @ = X). Consequently AM is a subset of a Haar zero set
in the sense of Christensen.

Proof: Recall that p(x) =lixll . For each xﬁlu choose
two distinct points yl(x), ¥(x) from Py(x). Put zl(x) =
= yl(x) - x, zz(x) = yz(x) - x, v(x) = ya(x) - yl(x) =
= z5(x) - zl(x). Since p(zl(x)) = p(zz(x)) and p is strict-
ly convex there exists h(x)> O such that

(2) Dv(x)(p,zl(x)) + h(x)< -D_v(x)(p,zz(x)).

Choose ty Lemma 2 7 (x)>0 8o small that

Dy (x)(Py2) <Dy (1) (P,29(x)) + 1/3 n(x) for any zew‘m(x)(zl(x))

and -D

_v(x)(p,z) > -D_v(x)(ppzz(X)) - 1/3 h(x) for any
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ZeUMl(x)(zz(x)).
The set C = {(z,(x), z,(x)); xe Ay} is a subset of the se-
Parable metric space Xx X, Therefore there exists a sequence

0
(x;){=7 € 4y such that

Cc U U n(x; )(zl(x M= U )(zz(x ).

n(x;

Let Ai be the set of all points xeAM for which

(z (x), z,(x))e U n(x; y(zq (x5 1)U xi)(zz(xi)).

Then ‘!ﬁ iUl Al and it is sufficient to prove that each set
A‘i can be covered by countably many Lipschitz hypersurfaces.
By Lemma 1 it is sufficient to prove that for any i and for
any xe€ Ai we have -v(xi)¢ contg (Ai,x). For this purpose fix

i and suppose that there exists xe A; such that
(3) -v(xi)e contg (Ai,x).

Put v = v(x;), 29 = 29(x;), 25 = Zp(x;), h = h(xi), n =
=m(x;). By (3) we can choose a>0 and x*¥ € A; such that
lavll< 7 and

(4) Il x* - yl < min (% ,1/6 ah), where y = X - av,

Now we shall find a lower and an upper bound for dM(x" ) =
= llzy (x* )N = llzl(x* .

Obviously lzy(x* ) =ly,(x*) -y +y - x*| 2
zhy (x*) =yl =y - x*l and ly,(x*) -y =
= ll(yz(x*) -x) + (x -y)l . Since yolx*) - x¥ = za(x* Je
¢ Un (z,) and lIx* - x ll< 27, , we have that ¥o(x*) <
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- xe U, (z,;) and therefore D (p,y,(x* )-x)>-D_ (p,2;) -

n
- 1/3 h, Since (x-y) = av, we have

ll(yz(x*) -x) + (x-y)Il 2 Hy(x*) - x|+ a(-D__(p,z,) =
- 1/3 h). Since yz(x* )e M, we have (Iyz(x"‘) -x IlZd.ﬂ(x)

and therefore

(5)  au(x*)2qu(x) - a D_ (p,z,) - 1/3 ah - lly - x*|>
>dy(x) - a D__(p,2z;) -~ 1/2 eh.
On’' the other hand,

zg(x*)I =y (x*) - x*I&lly;(x) - x*I| =

= l(yq(x)=x) + (x-y) + (y=x* )l £ || 2, (x) + avll + Iy - x*0 |

Since lavli<”n and z,(x)e Uy (z;), we have

z4(x), z, (x) + avc.Uz,,L (z1)

and therefore for any ye z,(x), z,(x) + av

Dv(p,y)<Dv(p,zl) +1/3 h,
From Iemma 3 it follows that

hzy(x) + av i< dy(x) + a(Dy(p,z;) + 1/3 h)

and therefore by (4)
(6) du(x* )<di(x) + a Dy (p,z;) + 1/3 ah +ly-x*] <

<dy(x) + a Dv(p,zl) + 1/2 anh,

From (5) and (6) we obtain that -de(p,zzerD;(p',zl) +h
and this is a contradiction with (2).
Let now @ be a Gaussian measure in X such that

supp ¢ = X. By H, Sato [6] @ can be considered as an ab-
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stract Wiener measure. Therefore by L. Gross [3] there ex-
ists a dense subset HC X such that w is equivalent with any
measure &, heH (@ (A) = w(h+A)). It is easy to prove
that for any Lipschitz hypersurface L there existe he€H
such that L is a Lipschitz hypersurface associated with h
and therefore @(L) = O. Thus we have w(Ay) = O. From this
assertion we immediately obtain that Ay is a subset of a
Haar zero set in the sense of Christensen (it is easy to gi-

ve a direct proof of this fact, see Introduction).

Corollary. Let X be an n-dimensional Banach space with
a strictly convex norm. Then Ay is always a set of & -finite

(n-1)-dime rsional Hausdorff measure.

Theorem 2. ILet X be a separable Banach space with a
norm p which is strictly convex and smooth. Let M be a sub-
set of X and let (rh);f,:l be a complete sequence of nonzero
vectors in X. Then A\L c 3 an where each Ihm is a ILip-

n,m=1
schitz hypersurface assoclated with x

n
In particular, ‘Il belongs to the Aronszajn’s class U°,

Proof: The proof of Theorem 1 works if we for xe Ay
instead of v(x) = y,(x) - yl(x) define v(x) as a vector of
the form x, or -x, for which Dv(x)(p,zz(i))<Dv(x) (p,z,(x)).
The existence of a such vector v(x) follows from the proper-

ties of the norm p. In fact, if no such v(x) exists, then

(pyz5(x)) = Dy (p,z4(x)) for any n,

D
*n *n
0
and from the smoothness of p and completeness of (ng)n_._l

we obtain
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Dza(x)_zl(x)(p,zz(x)) = Dzz(x)_zl(x)(p,zl(x)).

This is a contradiction with the strict convexity of p.

N 0o . .
The consequence concerning the class ‘4~ is obvious.

Note: When the present article was written we beca-
me acquainted with the paper "S.V. Konjagin, Approksima-
tivnye svojstva proizvolnych mnoZestv v Banachovych pro-
stranstvach, Dokl, Akad. Nauk SSSR 239(1978), No 2, 261~
264." The results stated in that paper overlap with our
results. In Theorem 1 of that paper the following proposi-
tiom is contained: If X is strictly convex n-dimensionsl
Banach space, then Ay can becovered by countally many of
(n - 1)-dimensional surfaces with finite (n - 1)-dimensio-
nal Hausdorff measure. Theorem 4 asserts that in any stric-
tly convex separable Banach space the set Ay is always a
set of the first category. In the Konjagin’s paper a mm-
ber of further results is contained. In particular, the
points of AM are classified by degree of singularity and
also descriptive properties of Ay are investigated. No re-
sult 8 concerning measure or the possibility of the cover-
ing of Ay by surfaces in infinite-dimensional spaces are

stated in the Konjagin’s paper.
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