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POLYNOMIALS OF THE EIGENVALUES AND POWERS OF MATRICES

Zden¥x DOSTAL, Ostrava

Abstract: Explicit formulae are derived for the en-
tries of any power of the companion matrix of a polynomial
p, regarded as functions of the roots of p. The formulae
are applied to yield an upper bound for the norm of a power
of any matrix in terms of its spectral radius.
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1. Introductiom. It is well known that the m-th power
for mX n of an nxn matrix A can be represented as a linear
combination of the lower powers of A. The coefficients in
this combination are known polynomials of the coefficients
appe aring in the characteristic equation of A (ef. [1,3,6,8]).
The last coefficients being elementary symmetric polynomials
of the eigenvalues of A, we can write

n .
AR - ;Ea wi,mkl-l’
where 'i,m are polynomials of the eigenvalues of A. The po-
lynomials ¥i,m proved to be useful in studying the relations
between the Norm of iterates and the spectral radius ([2,41]).
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Professer V. Ptdk conjectured that the sign of the

" coeffieients v x (k2 n) depends on i only; at his request,
the late Professor V. Kmi¢hal supplied a proof of this con-
jecture. This result was used in an essential manner by V.
Pték to characterize contractions A on an n-dimensjonal
Hilbert space which maximize IA®| under the condition

|Aly @ r. Another applicatiom of this result was given by
the present author [2]. Knichal’s proef was not published.
Quite recently three independent proofs were given by N.J.
Young (91, V. Pték [5] and the present author which also
yield explicit expressions for the vix°

It is the purpese of the present paper to give suech
explicit formula® anl to apply them to obtain estimates
fer the nerm of iterates of contractions on an n-dimensio-
nal normed space; these estimates are independent of the

choice of the norm.

2. Definitions and preliminaries. Let n be an arbit-

rary but fixed positive integer. For i =1,...,n, we shall
define the pelynomials

e, e e

= = 172 n
Bi = Bi(xl,..o,!n) 'ej‘ﬁ’ll xl xz eoe xn
and
&i = ai(xl,.co,!n? = (-l)n-i%-i"'l(xl’...’&)'

where x,,...,X, are considered as indeterminates. Hence

(1) (x-xl)(x-xz)...(x-xn) = 5 -a1-a5xX - ... -anxn"l
and
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(2) (1-xlx)(1-x2'x)...(1-r‘x) = l-apX-a, X" - ... -11?.

For each i, 1€ ifn, and k&0, we shall defime the po-

lynomials Wig = wik(xl,...,xn) by the recursive relations
() W5 een =815k 8275 ket ocee Y VY pened
with initial conditions

(4) 'i,k(xl’xz,,noo’xn) = d‘i k+1’ O‘kén - 1.

To avoid execeptions, we put Wi g = O for i<l.
?

Te prove that 'i,k are the pelynomials spoken about in
the introduction, suppose that A is a linear operator on anmn
n-dimensional linear space, and that the eigenvalues of A

are @qj,ecey Ppeo Note that the polynemial

n
p(x) = X - ifl a;((@qyeeey gon)xi'l

is the characteristie pelynomial of A and that, for i = 1,...
seesly Wi p T 84. Hence we have, by the Cayley-Hamilton theo-

rem,

= i-1
(5) A" = = alprree, pA
and
(6) A* = zw x(@preees pA

for k = 0,1,...,n.
To prove (6) for k>n by induction, suppose that m>n

ard that (6) is satisfied for k = 0,1,.s.,m~1, Put s = m - n,
“i = ai(‘sal’."’ ‘bn) and vi,k = 'i'k(sal,ooo,Pn)o I we
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multiply (5) by A® and use the inductionm hypethesis, we

suecessively get

n . n n .
m_ s+i-1 -1
A" = = <A a B ox, = v, ... AV =
i= i i=1 i j=1 J,8ti-1
n n n .
= . J-1 N
= j=l(i§l°‘1 va’aﬂ_l)A = j§=21 ”a,m“
Ir
¥,k Y2,k e Wy
V1,41 ¥2,k+1 *er ¥pk+1
V = . . .
k LR N ]
¥1,k+n-1 ¥2,x+n-1 ***  Vn xin-1
and
~ 1
1 o LN 0
0 LN ]
(7) T = . . . ee e . ]
o O o LN ] .
, -al 5'2 33 eee an‘
we have

Feey = THee
Since W, = (d'i :j)’ we have
]

v =T"

and

(8) Wy = ™' s ke s T,
lemma 1. If 1&ién and k1, then

(9 ¥ik+l T iol,e t 83V ke
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Proof: To obtain (9), it is enough to compare ent-

ries in the first row and i-th column of the matrices 'k+1

and W, T in (8).

Lemma 2, let 1€ ifén and ki - 1, Then
i-1
(10 Yik * j§o 85+1%n,k-i+j°

Proof: We get (10) by repeated application of (9).

3. General expressiom. For k&0, put

h, = hy( ) = 1,02, gom

= X. cee = X X, ce e .

k T B (XyseeerXy eyte.te =k 1 X2 *n
e,6€0,1,...,k}

Lemma 3. Let kxZn - 1. Then

¥n,k = By pe1
Proof: Define the generating function (c¢f.L[7]) for
'n,k by

= 2
f(z) = Wn’o + wn,lz + Wn'zz + eee o

If we multiply this equation by 1,-&n z,...,--a]_zrl and sum
up, we get, with help of (3) and (4), that

£(2)(1 - &gz - ... - 82" = "7,

Thus

n-1

z0 (1-a2= .. - a]_zn)":L =

£(z)
= ta -l -2t s

= z"’1(1+xlz+x§zz+...) coo (1+xnz+x§z2+...)v=
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= zn_l(h, + hlz + h222 + auo) =

= n 2"t + nz" + nya®™l g L,

We complete the proof by comparing the coefficients at

the corresponding powers of z.

Lemma 4. Let k&0, 1& i€n, Then

" (@1p000es€ e e
(11) Egh = = (dertite % tox P,
e testote =i+k
n
ejc{o,l,...,iﬂd

where q(el,...,en) denotes the number of e; different from
zero.

Proof: If we multiply E; and h, then the ‘result is
the sum of products, the first factor of which is the term
of E;, the second one is the term of h,. Each such product

may be written in the form

e. e e

1 72 n
(12) X)X eee Xy
where the exponents are non-negative integers whose sum is
equal to i + k. A product (12) with given exponents e;,...
«esy&y Whose sum equals i + k is obtained by multiplying
a term of B by‘a term of hk' The number of terms of Ei
which yield the given product is exactly (q(el"{"en)).

Theorem 1. Let 1 ifn and kxZn - 1, Then

(13) wy o = (=11 = q(e.--.e)l
i,k ) o teeute, skeiat Tned’ )‘1 ‘n
ejc&o 1,2,...3
Proof: Applying successively (10) and (11), we get
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i-1 i-1 s
= n=g-
iy ‘230 835410 k-i+j = ?:0(-1) ]1n_jhk-1+j-n+1 =

J
i-1 . e e
= 12 (-1)P-dL = (q(el,;l:..,en) )xll...xﬂl =
3=0 e .. ote, =k-i+1 J
eje{O,l,z,...'i
i-1 - . e e
= = (-PECE (cyitdl@len e ey) )y 1 R
e t..ote Tk-it] j=0 J
n
ejG{O,l,?.,...}
- ( l)n"i 2 (q(el,ono,en)-l)xel en
= e v e =k-inl n-i 1% °
ejt{o,l,z,...?
In the last step, we have used the identity .
s-1, _ s - s s - s
( i ) =« i ) (1_1) + (i_z) eee X (i"i)’
which is an immediate consequence of
s s-1 s-1
4. Evaluation of w; ,(r,...,r). Having obtained Theo-
b}
rem 1 it is now comparatively easy to compute wi,k(r,...,r).
First, counting the number of terms in the sum (13), we ha-
ve for k&n
n-i k-i+1“m(n'l"i*1) n,k-i,.q-1
(14) 'i’k(r,...,r) = ( 1) r q-_-n_ﬁl (q)(q-l)(n"i).
Since [ 7]
n m n , n-p
(nm X P ) = ( P )(n_m),
we have

k=i, q-1, _ (k-i, (k-n
(q-l)(n-i) = (p-3) (k-i+l-q)
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and
min(n,k-i+l) n k-n
k-i z’ (q) (k )c

-i+l=-q

'i,k(r’ . (_l)n-%k-d«rl(n-i

g=n=-i+l

The last sum may be simplified by use of a variant of

the Vandermonde convolution fermula [7)
n+p n P
( n ) = S ( X )‘m-k)’
Thus

L (et

(15) wi‘k(r,...,r) = (-1 n-i’ Ci-1

5. Applications. Iet X be an n-dimensional Banach
space, let L(Xn) denote the algebra of all linear operators
on Xn and let the operator norm and the spectral radius of
Ae L(X,) be denoted by |Al and |Alg respectively.

Theorem 2. Let O<r<l. If AeL(X ), |Al£1 and
|Alg & r, then for each k2n

n .
a6)  1a¥a = (kody gk rkmint

and

n . .
an e = QI 2 = o
>0 1=

Proof: Let r, k and A satisfy the assumptions of the
theorem. All the eigenvalues @;,..., Pn of A being less

than or equal to r in absolute value, we have by (13)

l'i,k( Prreees @p)! élwi’k(r,...,r)l, i=1l,...,n.

Hence

- 466 -



k -
1k = liﬁ;lwi,k( ©preees @ AL 1 £

n R i
) X-i,, k¥ . k-i+l
® izzllwi’k(r,...,r)l = i§l (l’b'i)(i-l)r .

To prove (17), note that |T(r,...,r)lg = r, where the
matrix-T-is defined by (7), and that

('i,k(r’...,r)'.”’ wn’k(r,...,r))

is the first row of the matrix T(r,...,x')k (ef. (8)). For

an nxn matrix (a‘i,j) put

Now, relation (17) simply follows from

> 4
ZIVli'k(r,...,r)l ‘ ‘T(I‘,...’r) Iw

i=]

and

ki .
11:_1’11:”1'1'(1-,...,::-) lo = 0.

The peint of the Theorem 2 is that there is an upper
bound fer [AK| independent of the choice of the norm.

Denete by Bn,w the complex n-dimensional vecter space,
the nerp-ix|, of the veecter x = (x;,...,X,) being defined
by the formula:

x| = max | x|
®  i=1,,..,n A

and for O< r<1 and kxZ0 put

C(Bp,u7 k) = sup £1a%1, :Ac LBy 4 )y 4], & 1 and || 6 T},
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In [2] we gave a partial answer to the question of
Professer V. Ptdk [4] about the values of ccanp,r,kn now

we are able to give an explicit formula for the case stu-

died in [2].

Theorem 3. Let O<r&2Y/P.1 and xZn. Thea

k~i

k-i+1
n-i ¢

)‘i-k-l) ?

n
(18) c¢(B, _,r,k) = = (
i=1

=0
Proof: We have proved im [2) that under the assump-
tions

n
C( ,r'k) = El"i’k(r,oco,r)‘ .

B, ™
Theorem 3 shows that for small r, the formula (17) gi-

ves the best possible bound.

I wish te thank Professor Vlastimil Pték for reading

this manuscript and suggesting some improvements.
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