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THE HAHN-BANACH PROPERTY AND EQUIVALENT CONDITIONS
Reinhard NEHSE, Halle/Saale

Abstract: Several general properties are proved to
be equivalent to Hahn-Banach extension property in a par-
tially ordered vector space. The properties include the
least upper bound property, the separation property and mo-
dified Farkas-Minkowski or Kuhn-Tucker or Krein properties,
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§ 1. Introduction. The Hahn-Banach theorem is known
to have fundamental importance for several fields in mathe-
matics, for instance in functional analysis, convex analysis
and mathematical optimization. Further, it is a well-known
fact (see To [9]) that the least upper bound property (lub)
of a real partially ordered vector space F (this means that
every nonempty subset of F which has in F an upper bound, has
also in F a least upper bound) is equivalent to the Hahn-Ba-

nach extension property (HB): for a sublinear mapping T:E—>

—> F and a linear mapping L :A—> F with Lo(x)é‘l‘(x) for

all xe A, where A is a subspace of the real vector space E,

there exists a linear mapping L:E—> F such that Ib(x) =

= L(x) for all x€ A and L(x)& T(x) for all xeE,
Previously Day [ 2] and Elster/Nehse [ 31,041 have dis-
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cussed some conditions which are equivalent to (lub).

The purpose of this paper is to prove more generél equi-
valent conditions., By this we are able to give applications
to nonconvex analysis, Our general separation theorem for
sets in a product space leads to generalizations of several

well-known theorems.

§ 2, Notations and terminology. Throughout this paper

R denotes the field of real numbers ordered in the usual sen~
se, E denotes a real vector space and F denotes a real par-
tially ordered vector space, that is a vector space, where a
binary reflexive, transitive and antisymmetrical relation
" & " is defined which is compatible with the vector structu-
re of F., E(K) denotes a real vector space quasiordered by the
convex cone K with OeK as a vertex.

Further, we apply some abbreviations: F :=4ye F/O£y? ;
& (E,F) denotes the real vector space of all linear opera-
tors L:E—> F;

£, (E(K),F):=4L e (E(K),F)/0&L(y) VyeK}.

Now let C be a nonempty subset of a real vector space.
Then 1 denotes the affine manifold spanned by C; iC denotes

the algebraical relative interior of C, that is
iC:=-£ueC/Vvelc 3 teR, t#0: u+ r(v-u)eC VYre(-t,t).

C is said to be expansive if for at least one u,e iC and eve-
ry ueC holds u  + t(u - uo)I ic for all t € [ 0,1), For a map-
ping T:C—» F we define

epi T:= {(u,z)e CxF/T(w)&z2z},

hypo T:= £(u,z) e CxF/z&T(u)} .
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Moreover, we use the following notations for a non-
empty subset C of ExF:

C(C):={zeExF/z = tu, te R, ueCj}
as the cone spanned by C;

PE(C):=-(xe E/3 yeF: (x,y)eC}
as the E-projection of C, where PE is a mapping defined by
Pp(x,y) = x for all (x,y)e ExF.

§ 3. A separation theorem, We will say that F has the
separation property (S), if in F holds true:

Let A and B be subsets of ExF such that C(A - B) is

convex, Pp(A - B) is expansive 1) ana

i
(1) Oe PE(A - B).

Then there exist an L € £(E,F) and a ¥y,¢ F such that

(2) L(xl)-ylé yoﬁ L(xz)-y2 v (xl,yl) €A,
Y (x,,y,)€ B
if and only if
(x,yl) €A

(3) —t) .
(x,y2)¢ B } yzéyl

Theorem 1. If F has the least upper bound property,
then F has the separation property.
Proof. Using a result by Vangelddre (see {1}, I.5.1)
we have
1741 =
Lirga - ] = p;(a - B).

Therefore,

1) A convex set is expansive, if icto.
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o= Yip (A - B) = - 1 -1
E = Yp (4 - B) = lppa - B) Py (A - B) =B (4 -B)

is a subspace of E and

i _i _
(4) Oe Pp(A - B) = PEI(A B)

is satisfied. Then A, B and C(A - B) are subsets of E,x F,

1
Now we can restrict our consideration to the space Elx F.

From (4) it follows that for every X € E, there exists t,e€
€R_, tli- 0, such that for any t el O,tl)there are y,:i=
1= y,(t)e F and y,:= yo(t) € F with (tx,y, - y,)€ A - B, Then

we can find such x, and x, in El for which
(5) (tx,y; = ¥p) = (xg = X5,y = ¥p) = (x,57) -
- (xz,yz)e A - B;
now we define

(6) Fo:={yeF/(x,y)e C(A - B)} , xekE,.

From (5) we get t'l(yl - yp,)e F, for te (0,ty). This ghows
(7) Fx+ @ for all xeE,.

Moreover, one has
(8) FuE F,

Let ye Fo\ 4 0% be fixed. Then, using (6) and the defini-

tion of C(A - B), there exist teR_, t#0, and points

(%,,y,)€ A and (xp,y,)€ B such that

(0,y) =t [ (xl,yl) - (x2,y2)] , where x; = X, .

By (3) one has yzé yys that means y = tlyy - y2)e F, . For

fixed x, x'¢ E, we have
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F +F, =4{y/(x,y)eC(A = B)} +£y"/(x",y")6€C(A - B} ;

then for fixed ye F, and y'e F_, it holds
(x,y) + (x",y’)eC(A - B) + C(A - B) = C(A - B)
since C(A - B) is a convex cone. Therefore
(x+x",y+y)ecCc(a -B) ;

that means y + y e F . Thus

x+x‘
(9 Fx * Fx’g Fx+x’ °

Now we are able to show that Fx has a lower bound in F for

every erl. Let erl be fixed. Then, by (7), there exists

vy’ with -y’e F__ . From (9) and (8) it fellows y - ye F o+
+ F_xi; FOE F, for all ye Fx . Hence y'& y for all ye Fy «

Since F has the least upper bound property, the ope-

rator T given by
(10) T(x):= inf {y/ye Fx§

is well-defined for all xé E, ; and one has T:E,l——* F. For

this mapping we get

T(x + x') = inf{ §/5e F_,_ 1}
x+x/

inf{y+y/y+yeF_ 3

+x0
¥y xx
€inf{y +y'/yeF,, y'e F, 3}
MANA

inf{y/yeF } + infiy'/y‘e F 3}

T(x) + T(x")

for all x, x € E,. Now let t€R, , t40, and xeE; be fix-
ed. Then
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T(tx)

inf {y/yeF, } = inf {y/yetF §

n

inf {ty"/y‘e F,} =t inf{y /y'e Fy §

tT(x) .

This relation is true also for t = O. Therefore, the ope-
rator T defined by (10) is sublinear.

Thus, using (HB), there exists an L e%(El,F) such
that L(x)#% T(x) for all x&E,. Combining this with (10),(6)
and the definition of the cone C(A - B) we get for x = x; -
Lixy - x)€T(xy - %)y, -y, Vix),y)e4,

v (x2,y2) € B,
Since F has the least upper bound property, this implies
V(x5,y,) € B,

where Y€ F is an element for which
sup &L(xl) - yl/(xl,yl) €A} & yoé inf {L(xz) - ¥/ (x5,¥5)€ B}
is satisfied. Let E, be an algebraical complementary space
of El' Then an arbitrary ze E has a unique representation
in the following way: z = x + u, xe¢ E;, uek, (see [ 71, p.
54). By (11) we can see that L’ defined by L (z) = L (x + u)=

= L(x) for all ze E is convenient.

Conversely, it is clear that (2) implies (3).

§ 4, Equivalent conditions. In this section we consi-

der the following properties of F using the assumption (A):
Let F(U) and D(V) be subsets of E such that
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P := D(U)N D(V) is nonempty, let U:D(U)—> E(K), V:D(V) —>
—> F and let C(A) be convex 2) for

(12) A:= £(U(x)+ Xk, V(x) + £ - u)/xeP_, keK, fe F, }
with
(13) u:= inf{V(x)/xePo, -U(x)e K3 .

Let U(Po) + K be an expansive set such that

(14) Oei[U(PO) +K1.

Modified Hahn-Banach extension property (MHB): Let
D(Lo) be a symmetric subset of E, let D(T) be a subset of E
such that D(T)2D(L)), D(T) - D(L)) is expansive and
06 *[D(T) - D(L)1 . If T:D(T)—> F amd L :D(L,) — F are
mappings for which C(epi T - hypo Lo) is a convex set and

(15) T(0) = O,

(16) L,(x) & T(x) YxeDd(L)),

(17) -Ly(x) = L(-x) Vxe&D(L)
are satisfied, then there exists an L e $(E,F) such that

(18) L (x) = L(x) V xeD(L)),

(19) L(x)&T(x) Y xe D(T).

Modified Farkas-Minkowski property (MFM): Under assum-

ption (A) we have

-U(x)e K
(20) } =0£&V(x)
Xe P0

2) In (81 we have given some sufficient conditions for this
property.
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if and only if there exists an L ¢ &, (E(K),F) such that

(21) 0&V(x) + L(U(x)) YxeP, .

Modified Kuhn-Tucker property (MKT): (a) Let assump-

tion (A) be satisfied. If x, is a solution of problem

(P) <find x &G with G:= {xe Po/-ﬂ(x)e K3} such that
Vix,) & V(x) for all xeG,

then there exists an L & £, (E(K),F) such that (x,,L)) is a

solution of problem

(sP) find (x_,L))e€P x &£, (E(K),F) such that

$(x,, L) & (x,,L,) & $(x,L)) for all xeP_ and all

Le & (E(K),F), where § is the Lagrange-mapping de-
fined by
$(x,L):= V(x) + L(U(x)), xeP,, LeL, (E(K),F).

(b) If the order-cone K has the properties 1x¢b and
K =% 3) ang if (x;,L,) is a solution of (SP), then x, is

a solution of (P).

Modified Krein property (MK): Let D be a nonempty sym-
metric convex subset of E(K), and let L,:D—>F be a convex
mapping such that

0§ L, (x) VY x&DnKk,

L,(-x) = ~Lj(x) V¥ xeD.

- -

3) For a subset KSE(K) we denote the algebraical hull by
bK that means bK:= KU‘K, where 2K contains all points
of E(K) which are linear atteinable of K.
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£ 0e i (D + K), then there exists an L e &£, (E(K),F) such

that
Ly (x) = L(x) ¥ xe D,

Krein property (K): Let A be a subspace of E(K) such
that A - K is also a subspace. If L e £,.(A(AnK),F), then

there exists an Le & (E(X),F) such that
L,(x) = L(x) ¥ xeA.

Theorem 2. The properties (lub), (HB), (S), (MHB),
(MFM), (MKT), (MK) and (K) are equivalent for a partially

ordered vector space F,

Proof. In order to show these equivalences we prove
the following implications

(S) =» (MHB) ==> (HB),

(1ub) ==> (MFM) = (MKT) ==> (MK) == (K).
It is referred to [2], p. 136, for a proof of (K)=) (HB),

1. (S)==> (MHB): We put A:= epi T and B:= hypo L,. Then
(16) implies (3). By (S) there exist L e &(E,F) and yoeF

with
L(x) - y, 4y, &L(y) -y, Vx,y,)eepi T, ¥ (y,y,)e hypo L,.

For y, = T(x) and y, = Lo(y) we get

(22) L(x) - T(x) &y, Y x € D(T),
(23) L(y) - Lo(y)ay0 V yeD(L).

By means of (17) and (23) one has OZyo and, therefore, (22)
implies (19)., Combining (15) and (22) we obtain Yo = 0. In
view of (23) and (17) it follows (18).
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2. (MHB) = (HB): We apply (MHB) to D(T) = E, D(Lo) = A,
where the mappings T:E~—>F, LO:L—» F are sublinear and li-

near, respectively.

Therefore, in connection with Theorem 1 and To’s result
we have the following equivalences:

(lub) <=> (HB) > (S)<==> (MHB),

3. (lub) == (MFM): Let (20) be satisfied. By (lub) and (20)
u defined by (13) is contained in F,_ . Moreover, U(x) + k = 0
with ke K implies u&V(x) and, therefore, one has O£ V(x) +
+ f - u for all f& F,_ . Since (lub) is equivalent to (S), we
are able to apply (S) to the sets B:= £(0,0)} € E(K)< F and
A defined by (12). In that way there exists -L ¢ £(E(K),F)
such that

-L(U(x) + k) - V(x) - f +uf0 V¥YxeP, VkeK, VfeF, .

Since ueF, , we get for £ = 0
(24) L(U(x) + k) + V(x)Z2u20 VxeP,, VkeK .

In order to prove L € £ (E(K),F) let xeP_ and ke K be fix-

ed elements. Then for each te R, t#0, we have
L(U(x) + tk) + V(x) = L(U(x)) + V(x) + tL(k)Z20 .
Therefore (see [6], Lemma A), it follows
inf (L) + +1 [LW) + V(x)1 /t>0F = L)Z O

because we get from (24) for k = 0 (21). Hence
Led (E(K),F).
Conversely, it is clear that (20) is a consequence of

(21).
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4., (MFM)=md (MKT): Applying (MFMM) to the mappings U and V’
defined by
Vi(x):= V(x) - V(x,), xeD(V),

we get from (21)
(25) L (U(x)) + V(x)Z V(x,) VxePo

for at least one L ¢ £, (E(K),F). Hence L (U(x,))Z 0.
On the other hand we have L (U(x )) %0 because of
U(x,) € 0. Therefore, it is L (U(x,)) = O. Then (25) leads to

(26) LO(U(xo)) + V(xo)ﬁ LO(U(x)) + V(x) VxePo .

Since U(x ) #0, one has L(U(x,)) €0 for all L ¢ £, (E(K),F)

and we get
L(U(x,)) + V(xo)ﬁLo(U(xo)) + Vix,) YLle £, (E(X),F).

In connection with (26) (MKT), part (a), is proved. Part (b)

is shown in [51.

5. (MKT)==> (MK): It is easy to see that D + K is convex
and, therefore, this set is expansive, too. If we put

E = E(K) + D(U), D =D(V), V= L, and U = -I, where I(x) = x
for all xe E(K), then all assumptions of (MKT) are satisfied
and we have Po = D,

G ={x€P°/xeK} = DnK.

Moreover, x_ = O is a solution of problem (P). By (MKT) then

o
there exists L e £ (E(K),F) such that

Ll(xo) + Lo(-xo)é Ll(x) + Lo(-x) Y xeD.
From this we get Lo(x)ﬁ Ll(x) for all xe D. That means

Ly(x) = L(x) VY xeD,
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since D = -D and -Ll(x) = 11(-x). Therefore, L = L, is con-

venient,

"
()

6. (MK)=> (K): We choose in (MK) D = A, L,
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