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COIttlENTATIONIS MATHEMATICAE UNIVMSITATIS CA10LINAI 

19,1 (1978) 

ON SYSTEMS OP GRAPHS INTERSECTING IN PATHS 

V. R5DL, Praha 

Abstract: Let X be a class of graphs. Let f(n,3£ ) de­
note the largest number so that there exist graphs G-^Gg... 
•••f(lf(n^) with vertex set VCIVI * n) every two of them in­
tersect m a graph which belongs to 3£ .In this note we pro-

is 5 
ve that c^ nr 6 f(n,3C )& c2 n tor JC * & » class of all paths. 

Our result gives an answer to a question of Prof. V.T. Sos. 

Key words: Graph, path, cycle. 

AMS: 05C35 tef. Z.: 8.83 

Notation: A graph G on a set of vertices V is a subset 

2 

of tV] . fhe elements of a G are called edges. If x€ V, de­

gree of x is dCx) » 14 yfyc V, 4xfy1 € G j | . The degree of 

a graph G with the vertex set V is defined as the 1(G) * 

* Max d(x). Let X * A x^t^* • • * **k. ? be a. k-element set. By m 

path of length k - IE 2 we understand a set 44 xi»x2 ̂  f 

4x2t
x3l »•••» ̂  xk-lfXk'^ • ®lt path of l e n« t t l * itt $• ^^ 

cyc,le of length ki£ 2 is a set 41 xi»x2^ f ̂ x2 f X3^ f##* 

•. •, % xv«.i t x v • » * x k f x l * 

The cycle of length k * 1 is 0. For k2 2 a k - 1 star is 

x) The same result was obtained independently by V.T. Sos 
and M. Simonovits and it is going to be published in 
Proceedings of the conference in Orsay. 
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defined as a s e t 41 x-^Xgl $^^itx\i §••*§ ^ ^ t ^ i i 

f a u l t s : 

I . - Upper bound. 

1.1 There a re a t most k( £ ) graphs %i®2» # # # Go with 

the fo l lowing p r o p e r t i e s : 

1) JXCĴ ) > k - 1 for every i c 41,2f...fpf 

2) Q^c H 22 for every i i 4 l»2f...fpj where l?| • n 

3) D(%^» 0j)<k - 1 for every i,j e 4lf2f...fp} i# j 

Proof: There exist kC J ) (k - 1)-8tars on the n-point 

set. Prom this follows that for every system iG-t^Gg,... 0 ] 

(p^(J)k) with the properties 1) and 2) there exists (k - 1)-

star S and ifjc{l,2,...p$ i4*jso that S c G^ and S c G. 

which contradicts 3). 

1.2 Let fy be a system of graphs with the following 

properties: 

1) D(G)-6 2 for every G * Q^ 

2) Qr\Q* i s a path f o r every Gf G#c Q* f G#G # 

Then f o r every <J/ c (& wi th \Cjf \ > 1 the graph 0 # G i s a 

p a t h . 

Proof : Let e , *'* af\f Q an^- ©r,e # = 0 . 

As Qr\Q' i s a path f o r every Gf G#« Cy t he r e must e x i s t f o r 

every G i ^ ' a path PQ * ^ e i * a 2 f , # # #k(G)^ s u c h t n a t c l = 

= a, « W Q ) = e ' f e^n ©j^-j* $ for i = 1 ,2 , . • • K(G) - 1 and 

FQC G. AS D(G)6 2 f o r every G § ^ c ^ we ge t PQ = P^ 

f o r a l l G fG
#c C^ . As every two d i s j o i n t edges in C\ Q 

a r e jo ined by a pa th which i s a subset of 7 ^ , 0 and D(GM2 

f o r every G € %/ i t fo l lows t h a t afX*® i s a p a t h . 

1.3 Let ^ be a system of graphs with the fo l lowing 
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properties: 

1) fhere exists ? with I ? | » n so that O + G c C f ] 2 

for every 0 c <J, 

2) G i s a path for every G m fy* 

3) GnG# i s a path for every G§G*6 (^ 

Then l t ; u ( C | ) ) + (») 

Proof- Let P • -U x l f x 2 i f -Cx^x^J , . • . , <xk_ l txj tlU<i-

P s M y l » y 2 ^ i y 2 i y 3 ^ »•••» * ty-i**1* € £ 

Let <3clfx2l " t y ^ j ^ i • n d ^ ^ - l * * * * • ' tye- i f* i 

From 3) follows that P » P # . So we have HJ.|-*(V2/) + ( | ) 

1.4 Let ^ bi a system of graphs with the following pro­

pert ies ; 

1) mere exis ts ? with I ?l « n so that 0 c £ VI 2 for 

every Q i ^ 

2) 0 is connected for every G 6 (^ 

3) G A G ' i s a path for every Gf Q#€ (^ 

4) 10(0)6 2 for every 0 € (f* 

Then |$-l 6 2(n - 2) [(IS))* (§)] * (|) 

Proof: From 1.2 1.3 and 4) i t follows that 

I-COnO#
tO tG

#€^II * ( ( ? ) ) • ( J ) + 1 

Define the sets 9± em follows; 

f̂  M G n G ' ; G , G ' l £. A VH, H#€ (^ -I (QnQ'$ HP .H # ) | - { Ol 

? i + l s «COnQ';QfO'e£.AVHt H#C fj- ( (HnH # e$ . - ^ j ^ ) - * 

—* -i(GrtG#$Hr.H#))f - 401 
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Denote by 6^ * 4Qf G 6 Cy and PcG for some ?€ f ^1 

and put £-̂  » E'^ 

gi+l " H+l *i 

Let P e ?*• There are at most 2(n - 2) graphs in £4 con­

taining P (the graphs in i ̂  are connected) 

As V S^ =|Gr»G#| GfG
#e %% -40i and 9. - U £.£ consists 

of pairwise disjoint graphs we have 

lÿl *2(n-2)[(í|)) + (5)] • (») 

1.5J Let G, be a system of graphs satisfying the proper­

ties 1) 3) 4) from 1.4 

Then 

I*H2<»-2>[(1|)) + (»)]tl») ((
Ri 2) + l) 

Proof: Denote by <£ the subset of ̂  consisting of all 

graphs which are not connected. Choose from every 0 €<£» o n e 

2 component c(G). For every e e tf j the cardinality of the 

set 9-e a * G*6 fe ?* » #fe a "" c^? is at most (n 2 / 
which necessitates I §J 4 ( !J) (n \ ) • Thus we have 

,*.«2<»-2> [^\)+®\+\\W\*) + l) 

II. Lower bound 

II.1 Let V be a set with the n elements. There exists 

a system of graphs <L , every two of them intersect in 

a path such that I % I Z ( |) 

Proof: Take a partition V « ? l u V2 u* # # u V5 w i t n 

- V i l » [
n y - x]for i * 1,2,... 5 
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Put G icj, iff oc) G is isomorphic to C~ (cycle of 

length 5) and (J) l¥(G)n?il = 1 for every i = 1,2,... 5 

where ¥(G) is a vertex set of G. 

It is easy to see that ($> satisfies ($c)* 

(Iterating this procedure one can get slightly better result.) 

Summarizing 1.1 1.5 and II.1 we get the following 

Theorem (g)5£f(n.g)*(g)[(n- 2) (*) + J (
n \ 2) + n - \ 

III. - Concluding remarks; 

111.1 It wouM be interesting to prove that 
f(ntZP) 

lim • r — exists and determine it. From 1.1 1.3 and 1.5 
m,^m n-» 

it follows that we can restrict ourselves to cycles. The fol­

lowing can be shown easily: 

f(nf^,5) 

The lim • exists where f(nf^Pf5) denotes the 

( * n.) maximal number of graphs isomorphic to C,. intersect­

ing in a path. 

Proofs Obviously f(n - 1, {P,5)2: f (ntfif5)(1 - §) 

Elementary calculation gives that for n > 5 the sequence 
f(n,^f5) /» 25 ^ 2 5 

p JLT^A CI - -7?) is decreasing. As lim #TT (1 - —») 

exists, (*.#t ) holds. 

111.2 Using similar methods as in I. snd II. one can 

prove the following: 

Hiere exist positive constants di f®̂ ? aucn that d-̂ n* *6 

^f(nfC)^d2n where C is a class of all cycles and for eve­

ry positive integer Z >. 3 there exist positive constants 
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e - ^ I ) f e 2 ( i ) such t h a t 

e 1 ( | ) n 4 t i f ( n f C C i ) u 10} )s e 2 C J ) n 4 

where C ( Í ) denotes the c l a s s of a l l cycles of l ength JL . 
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