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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,1 (1978)

ON SYSTEMS OF GRAPHS INTERSECTING IN PATHS
V. RODL, Praha

Abstract: Let X be a class of graphs., Let f£(n,X ) de-
note the largest number so that there exist graphs Gl.Gz...

""Gt(n,ﬁC) with vertex set V(|V| = n) every two of them in-
tersect i1n & graph which belongs to ¥ . In this note we pro-
ve that ¢, n’« f(n,X)&c, n? for X =P = class of all paths,
Our result gives an answer to a question of Prof. V.T. Sés.X)

Key words: Graph, path, cycle.
AMS: 05C35 Ref. Z,: 8.83

Notation: A graph G on a set of vertices V is a subset
of [V] 2. The elements of a G are called edges. If xeV, de-
gree of x is d(x) = |{ y;yeV, {x,y3€ G3| . The degree of
a graph G with the vertex set V is defined as the D(G) =
=$M.a§,d(x). Let X =4Xy,X5,000,X,} be & k-element set. By &
path of length k - 122 we understand a set {{ x,,x,{,
{xa,x3§ ,...,{xk_l,xkii . The path of length 1 is @, The
cycle of length kZ 2 is a set {{ xy,x,5 , {12,x3§ yeoe
RPPEE WYL R I W SR &

The cycle of length k = 1 is @, For k=2 a k - 1 star is

x) The same result was obtained independently by V.T. Sés
and M, Simonovits and it is going to be published in
Proceedings of the conference in Orsay.
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defined as & set {4 x),x;3 ,{x,x3% .00, 4xy,3, 37

Results:
I. - Upper bound.

I.1 There are at most k( !kl ) graphs Gy,G,,... G, with
the following properties:

1) D(G4)2k - 1 for every i ¢ 41,2,...,p}

2) G¢ tvi? for every i € £1,2,...,p} where |V| = n

3) D(G4n Gj"k - 1 for every i,je §£1,2,...,p} i%

Proof: There exist k( xk1 ) (k - 1)-stars on the n-point
set. From this follows that for every system {G,,G,,... Gp3
(p> (:)k) with the properties 1) and 2) there exists (k - 1)-
star S and i,j € 11,2,... p} i%j so that ScG; and Scay
which contradicts 3).

I.2 Let G be a system of graphs with the following
properties:

1) D(G)£2 for every G & G

2) GnG” is a path for every G, G'e G , G4 G’
Then for every G’'c G with |G’) > 1 the graph G-O(‘,’G is &
path.

Proof: Let e, e'es_fe\g,G and ene’ = @,
As GA G’ is a path for every G, G'e G there must exist for
every G € G’ a path Py ={e,e,,... ey (g)} such that e; =
=e, & (q) = e’y ejn e %@ for i =1,2,... K(G) - 1 and
Pgc G. As D(G)é 2 for every G & G c G weget Pg = P'G
for all G,G ¢ G’ . As every two disjoint edges in GC\C',G
are joined by a path which is a subset of eQQ'G and D(G) £ 2
for every G € G’ it follows that GO:‘,.'G is a path.

I.3 Let G be a system of graphs with the following
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properties:

1) There exists V with | V| = n so that O+Gc L V] 2
for every G ¢ §

2) G is a path for every G ¢ G-
3) GAG’ is a path for every G,G's G

Then lglé((g)) + (’2‘)

Proof: let P = {{ xy,x33, {x5,%3} ,..., ix_ 1% 31eG
P=q{{ yleZ‘y {yzaY3§ .---,{12_1-1'1}69«
Let (xl,xzi ={y1,y2§ and {’k-l’xk; ='iy'¢-1v7 5

. (n) n
From 3) follows that P = P°. So we have IG[<(\2/] + (2>
2

I.4 Iet 9, be a system of graphs with the following pro-
perties:

1) There exists V with |V| =n so that Gc LV] 2 for
every G € G

2) @ is connected for every G e G

3) GnG” is a path for every G, G e G

4) D(G)&2 for every G € G-

Then |G.l& 2(n - 2) [((?)-ﬁ (g)] + ('2’)
Proof: From I,2 1I.3 and 4) it follows that
If6¢nG",0,0°€ G} £ ((§)> + ('2‘) +1
Define the sets J4 as follows:
F,=40n0";0,6"¢ G A VH, H € G 71 (GRG'§HAB")} - {03
¥4y =10n0";0,0" ¢ QAVH, B'e G ((EnH'e G - ,}@4 F)-

— 1 (GAG §HAH"))} - 0%
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Denote by € =4G; G e QG and PcG for some Pe &}
’
and put €1 = El

4 ’
€ie1 = €i4y - €

let P e 3’i. There are at most 2(n - 2) graphs in €, con-

taining P (the graphs in €. are connected)

i
As Y Fy ={GnG"; 0,6°¢G} -40% and G - U €; consists

of pairwise disjoint graphs we have

1Gl £ 2(n - 2) H(%)) N (3)] - (2)

I.5: Let g, be a system of graphs satisfying the proper-
ties 1) 3) 4) from I.4
Then

igiezm-2 [(B) e (@) ]e(3) (("37)+2)
Proof: Denote by G the subset of G consisting of all
graphs which are not connected. Choose from every G eg_ one
component ¢(G). For every e e LV] 2 the cardinality of the
set G, ={G;G €G , eeG - c(G)'Z is at most (n > 2)
which necessitates lg.l £ ( ) (n - 2) Thus we have

lgléz(n-z)( )+ (3 ((rz2) +y)

II. Lower bound
II.1 Let V be a set with the n elements. There exists

(x) a system of graphs 9« , every two of them intersect in
3
a path such that |G |2 (g)

Proof: Take a partition V = Vlu Vyv... uV5 with

lvil'[ug];]for i=1,2,...5
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Put G e G iff o) G is isomorphic to C5 (cycle of
length 5) and 3) |V(G)NAV;l =1 for every i = 1,2,... 5
where V(G) is a vertex set of G.

It is easy to see that G satisfies (x).

(Iterating this procedure one can get slightly better result.)

Summarizing I.1 I.5 and II.1 we get the following

Meoren (2)'2 20,9 4(3)[(n- 2 (3) + § ("3 +n -1

III. - Concluding remarks:

III.1 It would be interesting to prove that

£(n,?)

11m~—'—r— exists and determine it. From I.1 1I.3 and I.5
m-y

it follows that we can restrict ourselves to cycles. The fol-
lowing can be shown easily:
f£(n, £,5)
The lim ————— exists where f(n,J°,5) denotes the
M=y nb
(% %) maximal number of graphs isomorphic to 05 intersect-~
ing in a path,
Proof: Obviously f(n - 1, P,5)z f(n,P,5)(1 - 2)

Elementary calcula tion gives that for n>5 the sequence
f(n,?,5) t»
.__.__;_ 3 Te (1 - P-) is decreasing. As 11m TT (1 - F)
exists, (ks ) holds.

III.2 Using similar methods as in I. &énd II. one can
prove the following:

There exist positive constants d;,d, such that dll'x4 &
€f(n,C)& c12!'14 where C is a class of all cycles and for eve-

ry positive integer &£ 2 3 there exist positive constants
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e1(2), e;(£) such that

e1(2n*e£(n,c(L)u10])e eyl mt
where C(£ ) denotes the class of all cycles of length £ .
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