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lr(a,r)-SPAGIS EETWEEN WHICH ALL THE OPERATORS ARB
. COMPACT, II
Nicole De GRANDEB-De KIMPE, Brussel

Abstract: Certain couples of Lr(a,r)-apacea, between

which 81l the operators are compact, are characterized.
This result is related to the existence of a common step-

space in both spaces.
Key words: Nuclear Fréchet space, compact operator.
AMS: 46A45, 4TBOS Ref. Z.: 7.972.23, 7.972.56

§ 1. Introduction. This paper is a continuation of

the investigation begun in 1 . The problem considered he-
re is to characterize certain couples of Ir(a,r)—spacea be-
tween which all the operators are compact. The relatiom
*All the operators frgm Qt(a,r) to Lb(b,a) are compact® is
denoted by (pr(a,r),lk(b,u))) « R .
Our main result shows that, in all the cases considered,
the relation (Lf(a,r),Lh(b,a)) e R is symmetric and is
equivalent to the statement
"the spaces Leo(a,r) and It(b,a) have no common step-
space”,
The definitions and terminology not explained here, as well
as the situation of the problem in the théory of nuclear
Fréchet spaces (and of Le(a,r)-spaces in particular), can



be found in [1). In that paper we restrict ourselves to the
d{agomal operators. It turned out that the existence of a
non-compact diagonal operator was related to the existence
of a non-compact generalized diagonal operator.

The question "What happens in the case when all the ge-
neralized diagonal operators between the spaces are compact?”

will be solved in this paper.

§ 2. Necessary and sufficient conditions for
(Ly(a,0), L (b,oa)) e R .

lLemma. Let T be an operator tro- Le(a, r) to L (b,s).
O<r,s &£ c0 , defined by !(od) = (e j)i' Then there exists
a k, such that

Proof: Consider the topological dual spaces
(L(a,r))” = Le(a,r)” and (L(b,8))" = L,(b,8)™ .
Then the transpose

Tt Lg(b,a)x——-’ I.f(a,r)’t

of T, is continuous when both spaces are equipped with their
strong topology.
Since the set {s; | i=1,2,...} is strongly bounded in
Ls(b,l)x and since IT(I,I‘)" is nuclear under its strong
topology, the set B = -i"'T(oi) \i=1,2,,..} will be a sim-
ple subset of Lf(n,r)x (see [41).

I.e.
sup ry

J
(a:p .ru)j = (o i )3‘ I,(n,x-)"‘t .



Hence
sup rij M+L () aj)
M, 3x h Yi: et £ °
’ o BUC that J: e £ e

or

v "ip i i 1
J & + 1,
£(r, a.) f(r, a;)
ko J ko J

from which the conclusion follows.

Remark 1. Given the increasing sequences (f(am))n and
(g(bn) )n' we can find increasing sequences of indices (pi)
and (q;) such that:

.es Gg(bqi_l) é t(api-l) éf(npi_lﬂ_) €... éf(api—l)
<8(bqi) €aee "s(bqiﬂ-l)"f(’pi)‘ eesy for all i,

For each j we demte by Pi(j) (resp. qi(j)) the smallest in~
teger between the p; (resp. qi), such that

£(a ;) &r( q)<g(bd )e
3 %y (2 94(3)
Proposition 1. Let (p;) and (q;) be the increasing se-

quences of indices defined in the preceding remark.
Ir

gmb, _,)
a3 1
(a) 3k1 such that Vm :lim ————F— = 0
i f(klapi_ )
and
£(k api_l)
(b) dm, such that Vk :lim =0,
my bq
i

then all the operators from Le(a,00) to Lg(b,oo) are compact.
I.e. (Ly(a,m), Lg(b,ao))c R .
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Proof: Let the operator T: Lr(a,m)—’ Lg(b,oo) be re-~
presented by the matrix (t; j)‘
It is easy to see that, for our purpose, it is sufficient to

consider those operators T for which "ij’ 0, Vi, V.

Ty
So put T(ej) = (e J)i. Then

r: +g(m b;)
_ ij i
l'.r(e‘]-)l“l = a\ixp e

and this sup is attained somewhere; at the index i(m,j) say.
Thus

IT(e )l , = eri(“"j)v-i+g(m bi(m:d)).
Put
Cpj = log llT(ej)u .
I.e.
(1) i = Ti(m,J), ] + g(m bi(m,,j)).

The continuity of T is then expressed by

cmj-f(gnej)< o .

Yo Bkm such that egp e
So:

(2) VYm, Ax,, 3j, such that cmjéf(kmaj) for j=jp.

The compactness of T will be proved if

(3) 3x such that VYm, Bjm:cmjéf(k aj) for §zjp.

We put J; =4j| °mj’°7‘ .
(Remark that, if J is finite or empty for all m, the opera-
tor T is compact.)

Since °mj increases with m we have J; 0 J, whenever



m>m’, Denote by m  the smallest value of m for *hich J_ is

infinite. Suppose we had:

.

m,
. ’
for je sz‘g(bi(ma,j

(4) 3myzm,, 3J, infinite subsequences of J,z such that

))=.f(aj)‘

Then take m; from assumption (b), t> max ('"2'"1)’ kmz and k,
from (2) and finally k> max (kmz'kt)'

Then for ,jeJm we have:
2

¢ c, .
0<—t U 3 for jzit
£k aj) f(ktﬂj)

So
2% °m2;i

(x) sup
Jedy, £(k ay)

< 0o .

On the other hand, by the definition of Cpjs W obtain
°t5% Ti(my, ), * 8 Pi(ay,§))
So
15 = °my§ ZEL Py(m,y,5)) - 8MP5m,, )
whence

Cej - cmzj N g(t bi(mz,j)) [1 ) g(m2bi(ﬂ2,j))}
£(k aj) £(x °j)

S(t bi(mz’j))

It follows from (4) that lim i(m,,j) = co .
Jedg
2
Thus
g(mabi(m :y)
J)
lin, crrp—ry =
Jtsz l(mz,J)

|
o
.
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Moreover, with the notation of the remark we obtain from

(4) that for jedJ_ :
m2

g(t b g(t b ) &(
2

o) by, )
imy, ) %) 79304

f£(k a.) T f(k a ) Pk
Jd pi(j)‘l aP

’
i
which by assumption b) implies
lim fff_ffffg;fll = o
jeJéz f£(k aj)
This is in contradiction with (x ).
Therefore (4) cannot be true,
I.e.

Vmzm,, 3j such that g(b.

i(mpy,J

Taking Ky from assumption a) and making use of the notations

n ))éf(&j), for jljn,jEJm-

in the remark, we then obtain

g(m b 8¢

m b )
such that O £ i(m,j)’ < 93 (4)"2
f(klaj) f(k,a

Vozm,, 3j, 3
Pi(j)~D)
for jed,, §2 jm'
From assumption (a) it then follows that
g(m b, )
(%) Ymzm, lim —dm ) .
LU jedy f(klaj)

We are now in a position to prove that T is compact. Take

k, from the lemma, k, as above and ky > max (ky,k.). We ‘11 pro-
ve that (3) is satisfied for k = ky. Choose any m.

If m<m,, (3) is satisfied since then Cpjé O

If mzmg, (3) is satisfied for j € IN\Jm and it is left to
check on (3) for je Jy (j sufficiently large).



Now

— Cmi . Tim )i, B P, )

So, by the lemma and (5) the desired conclusion follows.

Theorem. If £ Yo g and g 1o £ are slowly increasing

then the following are equivalent:

(1) ((Le(a,®), Lg(b,ao)) e R .,

(ii) All the generalized diagonal operators from
Lf(a,co) to Lg(b,oo) are compact.

(1ii) Le(a,) and Lg(b,oa) have no common step-space.,

(iv) ((Lg(b,oa), Le(a,0) e R .

(v) All the generalized diagonal operators from
Lg(b,oo) to Lp(a,00) are compact.

(vi) The conditions in the preceding proposition.

Proof: (ii)==> (vi): Consider, with obvious notations,

the couples of step-spaces:

(A) (Lf(api__l,oo), Lg(bqi_l,oc)) and

(B) (Lf(a.pi_l,co), Lg(bqi,oo)).

Then all the diagonal operators between the spaces under (A)

(resp. (B)) are compact.

I.e. [11 (§ 4 Theorem, (i)==p (v) and § 3 Lemma 1, (ii)):

(%) Yk, 3i, such that f(k a _1)< g(bqi_l) for izi,

Pj
or

(xx) Vm, 3i  such that f(m bqi'1)< f(api_l) for iZi

or




(x*%) there exists a partition N = N, v Nz such that

(%) holds on N, and (x%) holds on N ,.

Now (x ) and (xx%) lead to a contradiction with the
sequence of inequalities stated in the preceding proposi-
tion, while, taking k> 1 in (xx), we obtain assumption (a)
in this proposition. In the same way it is proved that case
(B) leads to assumption (b) in the proposition.

Since (i) => (ii) is trivial we have already, by the
proposition, (i)<==> (iik==> (vi),.

Proof of (iii)é==> (ii): Suppose that T is a non-com-
pact generalized diagonal operator from Lf(a,ao) to Lg(b,oo )e
Then T can be considered as a (non-compact) diagonal opera-
tor from Lf(a,oo)I to Lg(b,co )J for suitable subsequences I
and J of N .
Then by the Theorem in {1] § 4 (proof of (i)==> (v)) the
spaces Le(a,c0 )I and I,s(b,ao)J and hence also the spaces
Le(a,00) and Lg(b,w) have a common step-space. This contra-
dicts (iii). On the other hand, if L¢(a,00) and Lg(b,oa) ha-
ve a common Step-space there is obviously a non-compact ge-
neralized diagonal operator between them.

The remaining equivalences follow, by symmetry, also

from the Theorem inf{ll § 4.

Remark 2. As can be seen in [11 (§ 2, d4) and § 4, Prop.
2 + Remark 1), the case r = 8 = O behaves in exactly the sa-
me way as the caser =8 = 0
Therefore the preceding results are also true (with the sa-

me proof) in the case r = 8 = O,



§ 3. Necessary and sufficient conditions for

Ly(a,r), Lg(b,e) €cR , (0<r,s< )

Remark 1. Given the increasing sequences (f(r %))n

and (g(s b,)),, we can find increasing sequences of indices

(py) ana (qi) such that

oo £ g(s bqi_l)éf(r a )£ ... £2(r °pi-1)‘3(° bqi)_é...

Pja1

eee 28(8 b )éf(ra )£ v0e
8% Pa44p-1 Py

As before, for each j we denote by p ) (resp. qi(j)) the

i@
smallest integer between the P; (resp, qi) such that

£(r a;) < f(r 1)<gls b ).
J s ()72 9UG(3)

Proposition 1. Let (pi) and (qi) be the increasing se-

quences of indices defined in the preceding remark., If

g(s bqi-l)
(a) 3 kl such that lim = = 0
i f(r  a )
1 Pia
and
£(r api_l)
(b) 3 my such that lim —————— = 0,
1
i g(sy b )
1%

then (L,(a,r), Lg(b,a)) eR .

We omit the proof, which is similar to the one in the
case r =8 = 00 -
As an example we treat a special case in which the technical
conditions in the preceding proposition are easy to check.
The result (x ) obtained is similar to those obtained for po-

wer series spaces (see [ 3] Theorem 6 and [4) Theorem 3).




‘n+1
a,

Proposition 2. If lim = o0 and s>r, then
n

n
(Lf(a,r), Lr(a,a)) € R . Hence in this case the space

Lf(a,S) contains no subspace which is isomorphic to a spa-

ce Lf(a,r), forr<s (x).

Proof: We first determine the nature of the sequen-

ces of indices (p;) and (q;) in this particular case.
a

pi‘1>-§- >1 and thus is Z
We have 23 Pj.1Z 95
8q.-1
1 a a
Piay . py-1
If pj_,>q then lim = oo , whence lim =00,
1= i a i a
. api'l s
which contradicts <F .
aqi

So p;_q = q; for i sufficiently large.
So, for i sufficiently large, putting q; = i+ 1, we obtain

for the sequence of inequalities:

: . . £ .
eee<8 al_r al+1<e Bl+1_l‘ al+2<...

It is left to check on the conditions (a) and (b) in propo-

sition 1,

s

; = i 3

Fix k = k. Then 1lim n =0, or s a;< rk::’wl’ for i
k_ i+l

sufficiently large.

Take now k1> ko, then

£(s 85) Tlry 8542)
— i
Tl Biag) £l 2500)
o T ag)
Since lim = 0, conditior (a) is satisfied.

it (rk1°i+1)
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On the other hand, since s>r we can take m_ such that

o
sm°> r. Then f(rai+1)<=f(am°ai+1).
Taking my>m we obtain
f(s_a...)
L I 8541) m, i+l
- ’
f(°m1°i+1) f(smlai+l)

from which contidion (b) follows.

The proof of the next theorem is the same as in the ca-

se r = 8 =co and is therefore omitted.

Theorem. If 1, g and g-lo f are slowly increasing,

then the following are equivalent:

(1) (Ip(a,r), Ik(b,s)) e .

(ii) All the generalized diagonal operators from
Lf(a,r) to Lk(b,s) are compact.

(iii) Ir(a,r) and Lg(b,s) have no common step-space.

(iv) (Lg(b,8), Le(a,r)) e R .

(v) All the generalized diagonal operators from
yg(b,a) to Ly(a,r) are compact.

(vi) The conditions in proposition 1.

Remark 2, In the case - < r, s<0 analogous results

can be obtained with still the same proof (cfr. Remark 2,
§ 2)0
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