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COШCENTATIONKS MATHEMATICAl UNIVERSITATIS CAROLINAl 

1 9 , 1 ( 1 9 7 8 ) 

I^(a,r)-SPACKS ШTІЖШ VHICH ALL THl OPBRATORS å ü 

COimЄf, I I 

Nicole De GRANDl-De KIMPÏ, Brussel 

Abstract: Certain couples of 1.̂ (a,r)-spaces, between 
which all the operators are compact, are characterized. 
This result is related to the existence of a common step-
space in both spaces. 

Key words; Nuclear fre*ehet space, compact operator. 
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§ 1. Introduction* This paper is a continuation of 

the investigation begun .in 1 • The problem considered he­

re is to characteri«e certain couples of X*|p(afr)-apaees be­

tween which all the operators are compact. The relation 

"All the operators froji l^(m$r) to L (b,s) are compact* is 

denoted by (Iif(a9r),L (b,0))) « CR/ . 

Our main result shows that, in all the cases considered, 

the relation (1^ (a,r),L ( b , a ) ) tJl is symmetric and is 

equivalent to the statement 

"the spaces Lf(a,r) and L A b , s ) have no common step-

space*. 

Hie definitions and terminology not explained here, as well 

as the situation of the problem in the theory of nuclear 

Fr^chet spaces (and of If(a,r)-spaces in particular), can 
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be found in ill. In that paper we restrict ourselves to the 

diagonal operators. It turned out that the existence of a 

non-coapact diagonal operator was related to the existence 

of a non-compact generalised diagonal operator. 

The Question "What happens in the ease when all the ge­

neralised diagonal operators between the spaees are compact?" 

will be solved in this paper. 

§ 2. Necessary and sufficient conditions for 

(hf(m9m)f L (b9oo)) € % . 

Lemma. Let T be an operator froa L-,(a,r) to L_(b > s ) , 
*i1 

0-*:rte 4 00 f defined by K e J • (e 4)^ Then there exists 

a k0 such that 

n a - i )*i. 
j f (rk a.) 

Proofs Consider the topological dual spaces 

(%(t,r))' » %(a,r)5f and (l»g(bfe))
# » I»g(bfs)

x . 

Then the transpose 

* f 5 L^h9*f*—> IjU.r)* 

off, is continuous when both spaces are equipped with their 

strong topology* 

Since the set i*g | i * lf2f...l is strongly bounded in 

.Obf*)* and since l£(a,r)* is nuclear nadir its strong 

topology, the set B » 4^f(ei) 1 i • lf2f...l will be a sim­

ple subset of Xtf(afr)* (see 141) • 

I.e. 

T amp r y 
(amp e £j)j • (• * )j€%(a,r)

3t . 
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Hence 
sup T±t M+fCrk aj) 

.111, 3k 0 auch that Vj: e i £ e ° 

or 

aup r-y a 

V j : — - fi • 1, 
fCrv a.) f(rv a.) 

*© J *o J 

fro» which the concluaion follows. 

Remark 1. Given the increaaing aequencea W ^ O ) * al1* 

CgCb^))^, we can find increasing aequencea of indices Cpi) 

and (q^) auch that: 

— *« ( V l U f ( ^i . i U f ( a Pi . i + l ) * # , # " ( V l } 

«g(bq >*... Ag(b _i>**(«p ) * . # # f for all i. 

For each j we denote by V\t\\ Creep. %(4)) the smalleat in­

teger between the p^ Creep. qi) f auch that 

flaJAfiL, -i>**<bo ). 
j -pi(j)-i q i ( j ) 

Proposition 1. Let Cp^) and Cq.|) be the increasing ae­

quencea of indices defined in the preceding remark. 

If 

(a) 3 k-. auch that ¥ a : l i a = — s 0 ŁI 1 fll-Vi 
anđ 

ř ( k
 f i> 

(b) 3 m, such that Vk : l i « 0, 
^ - * - l b q ± 

then a l l the operators from L^(a,oo ) to L (b yoo) are compact. 

I . e . Cl^Ca.,00), LgCb,oo)) c % • 
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Proof: Let the opepatop Ts Î Ca,***) —* L Cbfoo) be re­

presented by the matrix (t41) • 

It is eaay to 0ee that, fop OUP puppose, it is sufficient to 

eonsidep those ©pepatopo T f OP which tji> Of Vi f V j . 

r4i 

So put TCe4) * (e
 A J ) 4 . Then 

Pii+g(» b£) 

i 

and this sup is attained somewhere; at the index: i(m,j) say. 

Thus 

1 ï(вj)l
a

 s
 вwp • 

Put 

c
a j

 ш ю g «T(eá)Ila. 

I.e. 

(1) e . * p4/« 41 4 * «C» b4/ .%) 
mj i i m f : j ; f j ° Hm,jJ • 

The continuity of T is then expressed by 

c^-fCk-a.,) 
V a, 3 k. such that sup i ̂

 m J <: oo . 
& 

So: 

(2) Vm, 3l^ f 3 j a such that c ^ A f C k ^ ) fop j> ja» 

The compactness of T will be ppoved if 

(3) 3 k such that Vm, J j a : c a j ^ f ( k a.) for j > j a . 

We put J a • ii | c a j > O i . 

(Remark that, if Ja is finite OP empty fop all mf the opera­

tor T is compact.) 

Since ca* increases with e w i have J a 3 Jffif whenever 
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m>m#. Denote by mQ the smallest value of m for # ^ich J M ia 

i n f i n i t e . Suppose we had; 

(4) 3 ^ 2 a 0 , 3«Jffl in f in i te subsequences of J ^ such that 

f o r j e ^ : g ( b i ( l 2 ) t j ) ) > f ( « . ) . 

Then take m-̂  from assumption (b) f t > a a x d^ja^)* k^ and k t 

from (2) and finally k>aax (k^ , k t ) . 
2 

Then for j e J_ we have t m
2 

< 1 fOГ jsï Jt» 
f(k . á) f ( V j ) 

So 

ctj - cm2j 
(# ) sup = «C 00 . 

JeJm2 *<- «J> 

On the other hand, by the definition of c ±, we obtain 

ctj2ri(m2,j),j
 + *(t "id^.j)5' 

So 

ctj " cm2j-«
(t bi(m2,j)

) " s ^ a ^ ^ . j ) 5 -

whence 

ctj - "mgj g(t bi(m2,j)
) [ «(B2bi(m2,j)

) 

f(k вj) f(k вj) в
( t b

i(m
9
,j)

) J 

It follows from (4) that lia idtu.j) * oo 

j * j ; 2

 2 

Thus 

«
( B
2

b
i(«

2
J)

) 

jeJ' «
U b

i(m
2
,j)> 
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Moreover, with the notation of the remark we obtain from 

C4) that for j e J* : mg 

xim2>V ^ HU) r
 X qiC.i) 

fCk a.) fCk aw .,) fCk a^ .% 
a Pi(j)-1 PiCjT1} 

which by assumption b) implies 

g(t bi(m2>j)
) _ 

lira = = oo . 

This is in contradiction with C*c )• 

Therefore C4) cannot be true. 

I.e. 

Vm>m 0 > 3 j a such that gCbi( jj)^fCaj)f for j 2s JB, j £ Ja. 

Taking k^ from assumption a) and making use of the notations 

in the remark, we then obtain 

*<• h±(m n> g U Vnrl} 

Vm>mof J j m such t h a t 0 £ • x * n t J J £ *Uu fCk^a.) fCk^a^ lXì 
1 j 1 P Ш Г D 

f o r j € J a , #> j ш . 

Prom assumption Ca) i t then follows t h a t 

gCm b 4 / 4%) 
C5) V i 2 i A l i » fdSjuflUL « o . 

o 1 J 6 J B f ( k i a j ) 

We a r e now in a p o s i t i o n t o prove t h a t T i s compact. Take 

kQ from the lemma, kx as above and k 2 >mas: ( k l f k 0 ) # We' l l pro­

ve t h a t C3) i s s a t i s f i e d f o r k = kg. Qioose any m. 

I f m<m^ t C3) i s s a t i s f i e d s i n c e then c .6 0 . o ' mj 

I f m2tmof C3) i s s a t i s f i e d f o r j c M^Jm and i t i s l e f t t o 

check on C3) for j € J a Cj s u f f i c i e n t l y l a r g e ) . 
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Now 

-ri(m.,i)..i , «<* bi(m..i)! 

fCk2a.)
 ftk2aj) fCk2aJ 

So, by the lemma and C5) the desired conclusion follows. 

theorem. If f" • g and g" »f are slowly increasing 

then the following are equivalent: 

Ci) CCLfCa,^), LgCbfco)) c % . 

(ii) All the generalized diagonal operators from 

I_|.Cafoo) to L Cb,o~>) are compact, 

Ciii) LpCafco) and L (btoo) have no common step-apace. 

Civ) CCL Cbfa?)f Lj.Ca,^) € % • 

Cv) All the generalized diagonal operators from 

L Cb,oo) to L̂ pCajOo) are compact, 

Cvi) The conditions in the preceding proposition* 

Proof: Cii) *-^ Cvi): Consider, with obvious notations, 

the couples of step-spaces: 

CA) CL^Cap^,^), LgCbq .lfoo)) and 

(B) (X^ap _lfa>), LgCbq#foo)). 

Then all the diagonal operators between the spaces under CA) 

Creep. (B)) are compact. 

I.e, £11 C§ 4 Theorem, (i)*** Cv) and § 3 Lemma 1, (ii)): 

C* ) Yk, 3i k mmh that fCk ap )< gCbq -]L) for i> i^ 

or 

C**) Vm, 2im such that f(a ^ - 1 ^ f(api-;i) for i>iffl 

or 
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(***) there exists a partition IW » W^ u N such that 

(* ) holds on W -̂  and (*. * ) holds on W 2. 

Now (* ) and (**#) lead to a contradiction with the 

sequence of inequalities stated in the preceding proposi­

tion, while, taking kj> 1 in (**), we obtain assumption (a) 

in this proposition. In the same way it is proved that case 

(B) leads to assumption (b) in the proposition. 

Since (i)«-» (ii) is trivial we have already, by the 

proposition, (i)<*-—> (ilk*---* (vi). 

Proof of (iii)4---*» (ii): Suppose that T is a non-com­

pact generalized diagonal operator from I^(afco) to L (b,oo ). 

Then T can be considered as a (non-compact) diagonal opera­

tor from L*(afoo)j to L (bt0D)j for suitable subsequences I 

and J of W » 

Then by the Theorem in til § 4 (proof of (i)===~> (v)) the 

spaces ll»(af<» )j and L (bfa?)j and hence also the spaces 

L^(afoo ) and L (bfco) have a common step-space. This contra­

dicts (iii). On the other hand, if l»^(mtoo) and L (bfoe?) ha­

ve a common step-space there is obviously a non-compact ge­

neralized diagonal operator between them. 

The remaining equivalences follow, by symmetry, also 

from the Theorem in til § 4. 

Remark 2. As can be seen in til (§ 2, d) and § 4f Prop. 

2 • Hemark 1), the case r s s = 0 behaves in exactly the sa­

me way as the case r » s « GO • 

Therefore the preceding results are also true (with the sa­

me proof) in the case r -* s = 0. 



§ 3. Necessary and sufficient conditions for 

I<f(afr)f L (bfa) € 31 f (0-.r,s^o?) 

Remark 1. Given the increasing sequences (f(r ^n})n 

and (g(e b n ) ) n t we can find increasing sequences of indices 

(p. |) and (q^) such that 

• •• -eg(s b„ , )6f(r a-. ) £ . . . ist(r a_ * \-cg(s b„ )&... 
H L pi-l pi i; % 

. . . £g(s brt ,) -sf (r &m )£ . . . 

.4s before, for each J we denote by P.t(4\ (reap. °*jMp ^he 

smallest integer between the p^ (resp. q^) such that 

fir a 4 ) .6 f ( r a . i ^ g ^ bn ) . 
J p i ( j ) * q i ( j ) 

Proposition 1. Let (p^) and (q^) be the increasing se­

quences of indices defined in the preceding remark. If 

g(a D i> 
(a) 3 k, such that lim = » 0 

1 i f(rk a ) 
к
l
 p
i-l 

and 

(b) 3 m
1
 such that lim »-• •» —' * • « 0. 

1 i «'sV 
then (L^(a

f
r)

f
 L (b

f
s)) e $l> . 

We omit the proof, which is similar to the one in the 

case r s s * Oo • 

As an example we treat a special case in which the technical 

conditions in the preceding proposition are easy to check. 

The result (#- ) obtained is similar to those obtained for po­

wer series spaces (see £31 Theorem 6 and 143 Theorem 3). 



Proposition 2. If lia StL- a «? and s> r, then 
n a^ 

(L^(afr)f Ito(a,s)) e tR, , Hence in this case the space 

Ii£,(afs) contains no subspaee which is isomorphic to a spa­

ce L^(a,r), for r-cs (* ). 

Proofs We first determine the nature of the sequen­

ces of indices (p^) and (q^) in this particular case. 

idL>« 
q r l 

a p-
We have --Ci ,£ |>i and thus i s P ^ ^ % 

ftpi-i ^ r 1 

If p. . > q4 then lia • =---- = oo , whence lia = — * ao, 
i aQi i Sqi . V1 -which contradicts • < - . 

So Pi.i s q^ for i sufficiently large. 

Sof for i sufficiently large, putting q^ - i + 1, we obtain 

for the sequence of inequalities; 

...«s a ^ r *i+x<* ai+l* r ai+2 < # #* 

It is left to check on the conditions (a) and (b) in propo­

sition 1. 

s a. 
Fix k = k0# Then lia — - — = — -= 0, or s a.-* rk •^ 1t -?or i 

1 rk/i+l ° 
sufficiently large. 

Take now k^> kQf then 

f(s «i) f C rk 0
ai+1 ) 

*<\fi*> < ^k^i+1^ 
f{rk *W 

Since lia 2 ^ 0f condition (a) is satisfied. 
1 ^k/i+l* 
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On the other hand, since s > r we can take m such that 

sw > r . Then f ( r a - . , ) <-tCaTO ®4Al)« BL i***i m^ i+JL o o 

Taking nu > m we obtain 

c _, f ( r ai+i} ,. f'V-*-' f 

" f ( 8 m 1
a i + l ) " " m ^ i + l * ' 

from which contidion Cb) follows. 

The proof of the next theorem is the same as in the ca­

se r s 0 s oo and is therefore omitted. 

Theorem. If f~ <* g and g « f are slowly increasing, 

then the following are equivalent: 

Ci) C%Cafr)f LgCbfs)) e ^ . 

Cii) All the generalized diagonal operators from 

L~(afr) to L (bfs) are compact. 

Ciii) L»Cafr) and L Cbfs) have no common step-space. 

Civ) CLgCb,s)f l^Cafr))6^ . 

Cv) All the generalized diagonal operators from 

L Cb,s) to LfCafr) are compact. 

Cvi) The conditions in proposition 1. 

Remark 2. In the case -*»< rf 0-< 0 analogous results 

can be obtained with still the same proof Ccfr. Remark 2f 

§ 2). 
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