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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

1 8 , 3 ( 1 9 7 7 ) 

THE NILPOTENCX OF TORSION-FREE RINGS WITH GIVEN TYPE SEE 

*) 
A.E. STRATTON and M.C. WEBB ,Exeter 

Abstract: How does the additive structure of a ring 
affect its multiplicative structure? In this note we con­
sider torsion-free rings and show that certain simple res­
trictions on the type set of the additive group of the ring 
forces the ring to be nilpotent. We obtain bounds on the 
degree of nilpotency in terms of easily derived invariants* 
of the type set. 

Key words: Torsion-free, type set, nilstufe, non-as­
sociative. 

AMS: 20K99 Ref. 2.: 2.722.1 

Introduction. The nilstufe, n(G), of a torsion-free 

abelian group G was defined by Szele £43 to be the largest 

positive integer n such that there is an associative ring 

on G having a non-zero product of n elements. If no such 

largest integer exists then n(G) is set equal to co . Fei-

gelstock [13 defines the strong nilstufe, N(G), in a simi­

lar way but in this case allows non-associative ring struc­

tures on G. Other authors have considered related notions, 

for example Gardner T33 and Wickless [63. 

In 153 Webb showed that if G is torsion-free with fini-

* ) The second author was in receipt of a grant from the Sci­
ence Research Council when this paper was written and 
gratefully acknowledges this fact. 
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te rank r then either n(G) = oo , or fl(G)£r, and either 

N(G) = co , or N(G)£ 2^ r~ 1 . The purpose of this note is to 

derive improved bounds on n(G) and N(G) in terms of the 

length Z =X(T(G)) of the type set T(G) of G. Here by the 

type set of G we mean the partially ordered set of types of 

non-zero elements of G. The length of T(G) is the length of 

the longest chain in T(G). This notion is well defined since 

T(G) satisfies both the ascending and descending chain condi­

tions. (Fuchs C2 3, page 112, Ex. 10.) It is easy to see that 

We introduce the following notions: 

(i) The height, h(t), of a type t in T(G) is the length of 

the longest descending chain in T(G) with t as its maximal 

element. Clearly, h(t) £ & for all t in T(G). 

(ii) If s, t are types we say that a absorbs t if st = s. In 

particular idempotent elements are self-absorbing. If s, %, are 

in T(G) and s absorbs £ we call s an absorbing element in T(G). 

(iii) The order 0(T(G)), of T(G) is equal to the greatest po­

sitive integer n such that there exists n+1 types i^,... l n, s 

in T(G) satisfying the condition: 

§ -* tc.1%2 * * * -n* 

If no such n exists we set 0(T(G)) equal to oo • Clearly a ty­

pe set of finite order contains no absorbing elements. 

Throughout the remainder of this note G denotes a tor­

sion-free abelian group of finite rank r. The length of T(G) 

is denoted by Z . With these conventions the main results are: 

Proposition 1; If N(G) = oo then 0(T(G)) = oo . 

Proposition 2: If T(G) contains no idempotent elements 
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then, 

n(G)£miiL-{2*- l,r i . 

Proposition 3: If T(G) contains no absorbing elements 

and N(G) is finite, in particular if T(G) has finite order, 

then, 

N(G)-4 2£~'1 

n(G)* Jt . 

We end the note with an example of a group G having 

N(G) = co whose type set contains no idempotent elements. 

Proofs of the re3ult9. Proposition 1 is a simple conse­

quence of the definition of 0(T(G)). Suppose that N(G) = oo . 

Then there is a ring (G,* ) on G and an infinite sequence 

gl,g2,***> °^ elements of G such that for each positive inte­

ger n there is a bracketing such that the product, 

^ = g 1 * g 2 * . . . * g n 

is non-zero. Now, 

t(xn)>i(g1)t(g2) ... t(gn) 

so 0(T(G)) = 00 . 

Lemma 4: Suppose that (G,* ) is a ring on G and that 

g^fg2 from G are such that gn* g24«0. 

(i) If T(G) contains no absorbing elements then, 

t^g-* g2>> -t^i*
 f o r ± = 1'2' 

(ii) If T(G) contains no idempotent elements then either, 

i(«i* s2)>i(g1) 

or i(g1*g2)>l(g2)* 

Proof. Clearly, £(g-|* g2)£ Kg1)t(g2)> t(g±) i = 1,2. 
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Suppose that t(g-,* gp) = t(g^), then 

(A) t(g1) = t(g1)t(g2)> t(g2) 

and t(g-i) is an absorbing element of T(G). This proves (i). 

If T(G) contains no idempotents then (A) implies that t(g-.) 

4-t(g2) whence t(g1)>tp(g2) and (ii) follows. 

Lemma 5: Suppose that T(G) contains no idempotent ty­

pes. Let (G, o ) be an associative ring on G. Let n, k be 

positive integers satisfying k>. 2n~ . Suppose that Si*^'*'* 

...,gk from G are such that 

g = gl° g2°*#* o g k * 0 # 

Then the height of t(g) in T(G) is at least n. 

Proof. If n = 1 the result is clear. Suppose that the 

result holds for all m.*=n, and that k*2 2n. Then, 

g = («i««2p---0«2n.l
)°{«2n-l+1

0 •••°gk) 

= Xoy, 

say. It follows from Lemma l(ii) that one of the inequali­

ties 

t(g)> l(x) or t(g)>t(y) 

holds. Thus, 

h(t(g))>h(£(x)) or h(t(g))>h(t(y)). 

But both x and y are products of at least 2 n elements so 

that, 

h(t(g))> n 

as desired. 

jl 
Proof of Proposition 2. Suppose that for some k> 2 

there is an associative ring (Gf « ) on G with a non-zero 
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pjL-uauct g = g^° g2° ••• ° g^. Lemma 5 implies that h(t(g))> 

>Jt + 1, contradicting the definition or Z . Thus n(Q) < 

<2* . Webb 143 shows that if n(G) is finite then n(G)£r. 

Taking these results together we obtain, 

n(G)£min4 2£ - l,r J . 

Let R be a non-associative ring. For each positive in-
(k) teger k we define R ' to be the subring of R generated by 

all products of k elements in R. Also we let F(R) denote 

the subring of the ring of endomorphisms E(R) of the addit­

ive group of R generated by the endomorphisms .L , Rft for a 

in R where, 

xLfi = ax, xR = xa, for x in R. 

Lemma 6: Let R be a t o r s i o n - f r e e r i n g . Let n and k be 

p o s i t i v e i n t e g e r s s a t i s f y i n g k> 2n~ . Then, 

R ( k ) £ R(F(R)) n . 

'Proof. We proceed by induction on n,the result being clear 

when n = 1.Suppose that the result holds for n » *>lfand that 

k>2m
#Let z be the product of k elements in R, then z « uv whe­

re at least one of u and v, u say,is a product of at least 

2*"°" elements.So, u is in R(F(R))m and w is in R(F(R))m+1. 

Proof of Proposition 3* Suppose that N(G) equals the 

positive integer k. Let (G,* ) be a ring on G such that, 

(G,* )(k)4-0. 

It follows from Lemma 6 that given any integer n satisfying 

2*i~1«c k then, 

G CF(G,* )] ( n ) * 0 . 
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In particular there must be non-zero monomials in 

G CF(G,# ) 3 (n'. Recalling that F(G,* ) is associative we 

see that such a monomial Qy may be written in the form, 

£ = ( ... ((gX1)X2) ... Xn)4-0, 

where g is in G and, for each i, X. denotes -* multiplica­

tion on the left or right ty an element of G. It now follows 

from Lemma l(i) that, 

t(g)< t(gX1)<i((gX1)X2)< ...<t((J.), 

is a strictly ascending chain in T(G) of length n + 1. By 

hypothesi9 n + 1 -» Z and so, 

N(G) = k^r^"1 

so completing the proof of the f i r s t inequa l i ty . 

Next s ince n(G)-£N(G), we may assume that n(G) = n, a 

p o s i t i v e in teger . Then there i s an assoc ia t ive ring (G, © ) 

on G and a c o l l e c t i o n gii^2***> gn °^ n e l e m e n t s of G such 

that , 

g l ° g 2 ° • • • o g n * s 0 # 

For each i sa t i s fy ing l-»i---n s e t , 

±i = iCgi" g2<» . . . °g±). 

Then using Lemma l ( i ) , we have 

i i + l » i ( ( g i » g 2
 g i ) o g i + i ) 

> H&i* g2d ••• •gi) = %• 

Thus there is a strictly ascending chain, £-̂ < t2< ..•<tn 

in T(G). Whence we deduce that n £ Z • 

Finally we give an example of a group G which has*. 
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(i) Finite type set, 

(ii) no idempotent types, 

(iii) N(G) = oo . 

Let R-.SR2.SQ be rational groups such that neither 

i(%) nor KR.-,) is idempotent, but t(R1)t(R2) = iX*^)- Î t 

G = R-jX® Rgy and define a multiplication * on G by put­

ting 

x*x = 0 = y*y, x*y = y = y* x 

and using linearity. Note that the fact that KRg) absorbs 

t(R-.) implies that given r in L , s in Rp then rs is in IU 

where the product is taken in the rationals. Note also that 

Conditions (i) and (ii) above hold. Moreover, for any n the 

product, 

x* ( ... * (x * (x*y)) ... ) = y + 0, 

where x appears n times. Thus N(G) = co . 
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