Commentationes Mathematicae Universitatis Carolinae

Jan Menu; Jan Pavelka
On the poset of tensor products on the unit interval

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 2, 329--341

Persistent URL: http://dml.cz/dmlcz/105777

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105777
http://project.dml.cz

COMMENTATIONES MATHEMATICAER UNIVERSITATIS CAROLINAE

18,2 (1977)

ON THE POSET OF TENSOR PRODUCTS ON THE UNIT' INTERVAL

Jan MENU, Antwerpen and Jan PAVELKA, Prshe

Abst : The paper is concerned with the way in which
the poset of all tensor poducts on the unit interval I of
reals is embedded in the complete lattice of all binary ope=-
rations on I. The main result says that any lower-semiconti-
nuous commutative operation on I that has O _for zero and 1
for unit can be obtained as the join in I¥*1 of a countab~-
le family of tensor mroducts on I all of whose members are

isomorphic to xEBy=0vix+y-1).

5&1 words: Tensor product, ¢£ -monoid, residuated lat-
tice, lower-semicontinuity. ’ !

AMS: 06450, 22415 Ref. Z.: 2.721.65, 2.721.67

Introduction. In [4) we considered various ways in
which I can be endowed with the structure of a symmetric
monoidal closed category. Recall that any tensor produet on
I (that is, an isotone binary operation g : IxI—I vi'th

the mroperties
(0.1) (1,0,1) is a commutative monoid;
(0,2) the distributive law
(VX)oa= V{xoa|l xeX?,
where VX denotes the supremum of X in I, holds for
any X<I and any aeI)
has a right adjoint h: IxI—> I, linked with O by the for-

mula
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(0.3) for all x,¥,ze I, xuy<z iff x<h(y,z).

The right adjoint h of O 1is uniquely determined by the
formula

(0.4) h(x,y) = max{teI|tox<«y?; x, yeIl.

Also recall that a binary operation on I satisfies
(0.2) iff it is isotone, lower-semicontinuous, and has O
for zero.

If we generalize the above notion to an arbitrary com-
plete lattice L with the least element O and the greatest
element 1; then a binary operation o on L is a tensor pro-
duct iff (L,0) is an jintegral cf —monoid in the sense of
Birkhoff [1]. According to Dilworth and Ward [ 2], a tensor
product on L together with its right adjoint h endow L with

the structure of a resjduated lattice; O 1is then called
multiplication and h is called resjdugtion in L.

In this paper we shall adhere to the terminology of [4]
and use the term "tensor product”. Given a complete lattice
L we shall denote by J(L) the set of all tensor products

on L partially ordered by the relation
(0.5) © £0° iff xoy£xa’y holds for all x,y€ L.

Thus, T (L) is a subposet of the complete lattice O°(L) =
= LI‘“‘ of all binary operations on L.

1. Some properties of the posets J (L)

l.1. QObgervation. Given a complete lattice L and D ,
0’ € J (L) let h and h” be the right adjoints of o and

o’ , respectively. Then o & o’ iff h(x,y)= h’(x,y) holds
for any x,yé€ L.
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Proof. It is easy to show that the adjointness condi-
tion (0.3) for a couple (o ,h) on L is equivalent to the fol+
lowing couple of inequalities in (L,n ,h)

() x<n(y,xoy) hix,y)ox<y "
If o040’ thenby (A7) for (p’,h”) we have h'(x,y)o x &
4«h’(x,y) 0’ x4y hence h'(x,y) < h(x,y) for all x,yeL.

Similarly one proves the converse implication.

l.2. Observat «» If L is completely distributive then
the meet A in L is the greatest element of I (L).

Proof. By definition, (x,y) > xAy is a tensor mro-
duct on L iff L is completely distributive. If D € T (L)
we obtain by the isotony of §p the inequality

xoy4(xal)Aa (Ao y) = xAy

for all x,yeL, Thus A is the unit of J'(L) provided L is
completely distributive.

1.3. Rempark. It is easily shown (see [21) that if L is,
moreover, boolean, J (L) =<{A3 .

l.4. Proposition. Let L be a complete chain. Then
3’ (L) has the least element iff 1 is isolated in L.

Proof. Given a complete chain L consider the operation

(o} if xvy<l
(1.1) xay = {
XAY otherwise.

Clesrly, & € T (L) 1££1>V {xeL| x41} 4in L. Since & &
4 0 holds for any 0 € T (L) it suffices to show that for
any ASLN{1% such that VA =1 there exists a system

4 ags a€A t of tensor products on L such that A =

=A -iual aeA} in the complete lattice (0°(L), To this end,
put
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(o] if xvy<a
(1.2) X0,y {
XA Y otherwise

for any a€ A and x,y€ L, Then it is easily verified that the
family 40,5 a€A % has the desired properties.

1.5, ogition. If L is a complete lattice and €L
is a nonempty chain in JY(L) then the join of ¢ in O°(L)
is again a tensor @oduct on L.

Proof. Assume that $# €L 1is a chain of tensor pro-
ducts on L. We have to verify that
(1.3) xay=Vixoy |loe ¢t

is a tensor product on L. Obviously, & 1s commutative, dis-
tributive with respect to all joins in L, and it has O for
zero and 1 for unit. As to the associativity, take any x,y,
z€L., We have (xaylaz =
=V{(Vixoy |loeX}laucz|o’e A} =
=V {V{(xay)o’z|oe ®A3}|n'e®A} =
=V 4 (xa”y) 0” z |0” = max(a ,0'); o,0"e O}
=V4{ xo”(ya“z) | 0” = nax(q ,0"); 0,0"e €3
=V4{V{xalyoz) |o’et}|net =
=V{i xaV4{ydz |o'ethsi|oe®? =xa(yaz).

]

]
]

2. A regult concerning TJ°(I). ILet us now consider the
case when L = I ig the unit interval of real numbers. Let
NAUAs (1), L+ @, and let &=V« in 0 (I). If we
omit the requirement that ¥4 be a chain, & 1is asgain iso-
tone, commutative, lower-semicontinuous, and has O for zero
and 1 for unit. On the other hand, it need not by far be asso-
ciative; in fact, we shall show that any binary operation A
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on I that fulfils the above mentioned conditions can be ob-
tained as s join in 07(I) of a countable family {ui;i €
€ wi of tensor products on I. Moreover, we can ensure
that each Q5 is continuous,the semigroup (I, Ui) hss no
idempotents other than O and 1 and all elements of IN4 1%
are nilpotent in (I, 04); in other words (L51), that each
semigroup (I, Ui) is isomorphic to (I, @ ) where

(2.1) x@By=0V(x+y=-1) for all x,yeI.

2.1s Theorem. Let A be an isotone, commutative and
lower-semicontinuous binary operation on I such that xa0 =
= 0 and xA1 = x holds for any x& I. Then there exists a
countable set €L or tensor products on I isomorphic to the
product B given by (2.1) so that
(2.2) xay = V4ixay|oe o3

holds for all x,y € I.
Proof. We shall need the following lemma which follows:
immediately from the lower semicontinuity of A .

2.1.1. Lemma. With A as in the assumptions of 2.1
let D be a dense subset of I and let X,¥qjecs¥ps3qyecesZpny
wel so that xax>w and x4 y;> 23 for each i = Aysee,ynle
Then for every u< x there exists de D with the properties

u<d<x, dad>w, and day;> Z.

2.1.2, Assume given & that satisfies the assumptions
of 2.1 and some a, b, € with
(2.3) O<bg£a<l, O< €& < aAb.

We are going to prove that there exists an order-isomorphism

f: I=I such that the tensor product af on I defined by

- 333 -



the formula
£ _ -1
(2.4) xm y =f (fx@ fy), all x,yel
satisfies the inequalities
(2.5 emib>aab-¢ , xmfycxay for all x,ve1I.

Choose a countable dense subset DSI so that O, 1€ D,

Now assume we have constructed a family
(2.6) id ,; n25, 3£k<2" 3
?

with the properties

(a) D={d, ,|n25, I4ke 2" 3,

(b) 17dy 3> dy 4>ee- >4, o0, >4, o0 =0 for any
nZ5%;

n

(e) dp,x = dpeq 2 TOT any n25, 3£k 427

(a) dn,kAdn,p> dn,k+p—2 whenever nZ5, 3%k, p, and
k + pe2” + 2;

(e) a>d5’13, b>d5’,18, and aAb - € < d5,31.
Then the map dn,k —>1 - /2% 1s an order-preserving bijec-
tion between Du 403 and the set of all (notice that
dn01,4 — 1 - 2/2" and dn+2,4 — 1 - 1/2") dyadic ration-
als in the interval £ 0,2 , which is dense in I, too. Its

unique extension f to the whole of I is an order-isomorph-

ism IR I with the property
(2.7) for any nZ5 and any k,p = 3,...,25,
£
Aoy 887y [ = 4y, min(2®, k+p)*
We have xa1 =x$£1 =x, XA0 =x Esfo = 0 for any x€1I.

Next, 1f O< x, y<1 we can take the first n=5 with a 3>x,
9
y>dn,2n_1 (this n certainly exists because D is dense in I)
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end consider the last k and p in £3,...:2% % with dy 2z *
and dn,pz Y, respectively. Then x"dn,k*l' y>dn,pﬂ' and

{ either k + p>2" whence x aafyédn’k Qfdn,p =2 046%X5Y
. n £ £3 =
or k + p&£2 whence x /B yédn’k B n,p

=4 <dn,k+1A dn,p-&le xXAYe.

n,k+p
Pinally we obtain from (e) that & BTbzd; 13 85745 1 =
= d5’31> anb-¢ .

Thus we only have to construct the family (2.6). Choose

a sequence es< eg<...<8; ..e with en)"l and fix a well-
ordering of the countable dense set D (when we mention the
first element of some nonempty subset of D in the sequel we
shall be referring to just this ordering). We shall proceed
by induction on n.

I. For n =5 first choose d,g€ D with asb - € < dyg <

< aAb.
Since aAb>d29 it follows from 2.l.l that there exists

d,me D such that d29< dyg<by 8A d18>d29.
Similarly we can uss 2.l.1 and the last inequality to en-

sure the existence of some d,3€ D with d;g<d,y<a, dj3ad;g>

> dzg'
Next there exists d,l.’eD 8o that d’iS‘ d17< d13 and

474 98> dag-

Now pick d14 through d16' and d19 through d23 80 that
dy7< dgg< dy5<dyq<dy3 and dyg< dyy<dpy< Ay < dyp< dhg<dyg.
Because A 1is isotone we have

dpa dpz d”A d'18> d29

whenever 134 k<17, 13£p£18 so that we can successively pick
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elemrents c124 through d28 with the properties

dpg< dpg< dyzn(dy3ady,),
dyg< dpy5< d24A(d13A d“),
dyg< dyg<dygA (d13A d‘15) A (d,“A d‘14) ,
Qpg< Gp7< g A (83841 5) A (804, 5),
dyg< dyg<dygA (d13Ad17) A (d“A d'J.G) A (d15°d15)"

Finally we choose d30 and d3’l 80 that aab - € < d3’l‘ d3°<
< d29 and put d32 = 0.

Since 1a ’l>d22 and 144, = dk> d‘10+k for each k = 13,...
¢¢0422, Lemma 2.1.1 guarantees the existence of some 4,,€¢D
such that 4,4 d12> c‘]22 and 4,4 4, > d10+k for all k = 13,...
eee 422, We pick one and proceed similarly in all the remain-

ing steps. Thus we obtain in turn:

d'u‘ D with d’lIAd'n" dzo and dnA dk> d9*k; k =12,...,23;
d‘.lO‘ D with dmA d10> d’.l.8 and dmA dk>d

Bek; k = 11,...,24;

.
d4€D with d4Ad4>d6 and d4A Q>dy,.; k= 5,...,30;
and finally dy€ D with a;> 5 d3A d3(> dys and d34 ay >4y 0
k= 4,000,301, ’
Since A is commutative, putting d5,k =4, for k = Jyeee

000332 yields a finite sequence that fulfils, for the fixed
n_= 5, the conditions (b),(d),and (e).

II. Induction step. Assume given a family
"dm,k; 54£mén, 3£k<2™ 3 such that every dm,k belongs to
D, the conditions (b) and (d) are satisfied for all mé&n, the
condition (¢) 1is satisfied for all mén -~ 1, the condition
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(e) is satisfied, and dp 3> e, holds for each m = 5,...,n.
n
For any k = 3,...,2 PUt dp,y 5, = dy . Then take the
first element d of the NOnempty subset

{teD]| t<dn’3? \{dn'k]k = 3,004,209

in D. There exists the unique k, such that 3£ koé 2P _ 1 and

a <d<dn,k°' Put dn+1,2k°'°"l = d (this, together with

n,k +1
4, 3> e, 71, ensures that all elementis of D will eventually

’
get included in our family), For k+k°, 3Lxsa® -9 pick an
arbitrary element d;,q o4y € D so that 4,y < dn+1,21c4-’1< dn,x°
We have defined all the members d.,) \; 6%k42". Obviously
1>d '

>e0e>d zn*l = 0,

n1,6” 3ne 7
Now we shall verify that

n+l,

dpeq ,kA dn+1 P = dn+1 Jk+p=2
holds whenever 64k, p and k + p%2°*% + 2. Ve shall distin-
guish the following three cases.

1. Ifk=2r and p = 28 then r + 842" + 1 and by the
induction hypothesis we have dnﬂ,kA dm‘l,p = dn,r‘“ dn,s >

>dn,ree-2 = 9neq, kep-4~ o kep-2°

2. If exactly one of the numbers k, p is odd, e.gs k =

- _ n
=2r, p=28 +1 thenr + 82 + 1 and we have dn'l'l,k a

n+l,p> dn,rA dn,e-"l> dn,r-’-s-‘l =4 sk*P-J"dm-l,k-rp-Z'
3. Ifkx=2r+1andp =28 +1thenr + 34«22 and we

a4

have d4p 18940 52 9y ren 8 9,841 ™ % res = neg peepe2t
It remains to define dmfl,k for k = 3,4, and 5. Again

we recall 2.1.1 and choose successively
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dnﬂ@cn so that dn.l,sAdn¢1,5>dn+1,3 and dn*i,SAdn+1,k>

n+l _ 3.
> dn+1,3+k for each k = 6,...,2 ’

>

001,46 D 80 that doe1 44 dneq 4™ Gnag 6 209 One 42 dnag )
+1 .

> a4 2wk for each k = 5,...,2%"" - 2;

%ne1,3€D 20 that dig 3> 410 dpan 388540 37 % 40 and
21 - g

dnﬂ,36dn+'l,k>dn+1,’l+k for each k = 4,...,
2,1.3. Let A satisfy the assumptions of 2.l. Take &
countable dense subset D of I whiech misses O and 1. Since 1

is the unit in (I,a ) and A is lower-semicontinuous the set
(2.8) A = {(a,b,m)|a,beD,aZb, aab>1/m ?

is infinite countable. Owing to 2.1.2 we can select for each
(a,b,m)e A a tensor product Og,b,m o7 I 80 that the ordered
semigroups (I, Da,b,m) and (I, 8 ) are isomorphic, X0g b, %
$x48y holds for all x,yeI, and ad, , b>aaAb - 1/m.
R ]

We set
(2.9) xoy= V4{x g, b, ] (a,b,m) €A}, all x,yelI.
Clearly 0 € A holds in (°(I). Now suppose there exist x,
yeIl with x0y<xAy. Then x,y40,1. Since A is lower-semi-
continuous there exist x;< x and y)<y such that x y< X187,
Because D 13 dense in I we can take some a,be D with xj<8 <
< x, < b<y, and, say, a= b. For every natural number m >
>1/(xy8¥) -~ XOy) we then have a0 bZan, j, pb>aabdb -
-1/mz2xAy¥; -~ 1/m>x yza b, which is abeurd. Thus O = A
and the proof of 2.1 is complete.

2.2. Corollary. For any n , n’€ 3 (I) the operation
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A defined on I by the formula
(2.0} xay = (xay)Aalxa'y)

fulfils the assumptions of 2.1 hence & = V¢L in O(I)
for some subset @ % €L S.3(I). Thus, if the couple {a, 0’}
has a meet in T (I) then the meet necessarily coincides with

(220). Conclusion: €0, 0°% has a meet in J (I) iff the
operation (2.J0) is associative.

2.3. Corollary. Owing to 2.2 it now suffices to find an
example of two tensor products on I whose meet in O°(I) is

not associative in order to prove that J°(I) is not a lower
semilattice.

Exagple. Let O = B and let O° = B3 © where the order
isomorphism f: IXI is defined by the formula
x if 06 x£1/8 or 1/2£x 41
(2.11) £x = { 2x - 1/8 if 1/84x41/4
x/2 + /84 if 1/4£x<1/2,
Then
Mamt /e =3/4m7/8 = 5/8,
5/8 aaf 1/2 = 5/8 ®1/2 = 1/8,
s m® 1/2 = £71(3/8) = 1/4<3/8 = /88 1/2,
e @t 14 = £72G/am 3/8) = £ Hase) =1/8>0 =
=3/4@m1/4
hence

(3/4017/8)a1/2 = 5/8a1/2 = 1/8>0 = 3/4a1/4 =
= 3/4a(7/8a1/2)

and the meet A of n and o’ in 0 (I) is not associative.
Conclusion: J'(I) is not a lower semilattice.
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2.4. Corollary. If 3°(I) were an upper semilattice then
by Proposition 1.5 all nonempty joins would exist in T7(I).
In particular, for any g0, 0 € 7 (I) the nonempty set of
all lower bounds of £, 0°% 4in J(I) would have a join
in J(I), which contradicts 2.3. Conclusion: J°(I) is not

an upper semilattice either.

2.5. Remark. On the other hand, it follows trivially
from 2.1 that any 1 € 7°(I) 1s a join in T (I) of a count-
able set of elements isomorphic to 88 . In view of 1.5 it is
natural to conjecture that there always exists even a non-de-
creasing sequence 4 Opin € «@ $ of isomorphs of B8 so that

nn/u « This, however, remains an open question.
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