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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,2 (1977)

ON EXTENSIONS OF FUNCIORS TO THE KLEISLI CATEGORY

Ji¥f VINEREK, Praha

gpgtrggt: Sums of Hom(n,-) with n bounded cannot be ex~
tended on a Kleisli category of the monad Mon corresponding
to the variety of monoids. On the other hand, the countable

sum ny1 Hom(n,=-) can be extended on this Kleisli category.

K rds: Set functor, hom-functor, monad, Kleisli
category, gIsfributive lawe.’ ! !

AMS: Primary 18C15 Ref. 2.: 2.726
Secondary 18B20

In (1], M.A. Arbib and E.G. Manes studied a problem when
a functor F: & —> £ could be extended to the Kleisli cate-
gory of a monad. They proved that a sufficient and necessary
condition for existence of such an extension is commuting of
diagrams analogous to the Beck distributive laws between mo-
nads (see [2]1). Therefore, the term "distributive laws" is us-
ed for these diagrams, too.

M.A. Arbib and E.G. Manes proved in [1l] that set func-
tors - x 3 satisfy these distributive laws with respect to
any monad over the category S$et of sets and mappings and the-
refore they can be extended on a Kleisli category of any mo=-

nad. In the present note, there is shown that a similar ass-
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ertion is not true already for some hom-functors and for ve-
ry natural monads. Such a very naturally defined monad is
a monad corresponding to the variety of monoids (i.e. semi-
groups with units) which does not satisfy distributive laws
with respect to Hom(2,-) (more generally, with respect to
sums of Hom(n,=) with n bounded - see Proposition 1.1). On
the other hand, this monad satisfies distributive laws with
respect to the countable sum m{z’ Hom(n,-) (see Proposition
1.3).

I am indebted to V. Trnkové for an impulse to consider

moblems mentioned and for valuable advice.

O. At first, we recall some definitions and establish
notations.

0.1. Let & be a category, T: ® — &R  a functor,
I: &—>& an identity functor, 7 : I—7T, (: ”_,
natural transformations. We recall that (T,7,«) is called
a monad iff the following diagrams commute:

T Tmn,
T2 T ___"L____, T2<————-— TI

T
D I
‘“le l@ \ /
©w
—_—— T T
9.2, Notations, a) Denote Mon = (M,e,m) a monad which
assigns to each sét A a free monoid over A. (I.e. MA =
={ageeeay; ne i1,...} , age A for i =1,...,n30 {A},
where A 1is the empty word, e,(a) = a, “‘A((“l‘l"“lkl) .ee

coe (am. . ‘ankn) ) = agqeee ankn) . The corresponding category

of monadic algebras is a variety of all the monoids, the
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corresponding Kleisli category is its subcategory of free mo-
noids.

b) Qn denotes a functor which assigns to each set A a
set A" of n-tuples of its elements and which is obviously de-
fined on mappings.

¢) exp & denotes the set of all the subsets of A.

0.3. We recall the following definition (Arbib~Manes):
Let & be a category, F: £ —> & a functor, (T,7,«) &
monad., F is said to satisfy distributive laws over (T,'YL,(u.)
if there exists an assignment to each object A of & a mor-—
phism JLA: FTA — TFA such that the following two diagrams

commute for each & and o« : A —>TB,
a

(1) FTa —2A > TR2
/ (the first distributive
Fin,) TFA law)
F&
) 2
FTA A TFA
%*
Flac¥) (AgeF(x))
3'5 (the second distributive
FIB TFB law)

where o¥ = g oT(e).

O.4. Remark. A functor F can be extended on a Kleisli

category over (T,7,m) iff it satisfies the distributive
laws over (T,% ,w).
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1l.1. Proposition. Let I+@ be a set, N be a set of all
the natural numbers, ¢ : I—> N be a bounded mapping, n =
=Lm2x1<f(1)?. 2. Then F =,\/;Q (;) does not satisfy distribu-
tive laws over Mon.

Proof. Suppose existence of a collection 4 A,: FMA—>
—> MFA; A€ obj Set $ such that the distributive laws hold.

I. Choose sets Ao”""‘n’ K such that A s e SA SA,
card A, =1,

. - (i) - .
eard A5>n . agl(card Ajp *n=§+3) for § =4,ee

eeeyn = 2,
card Ap_,>n . kgl (card A _5 + 32?;1) +1,
card A,>n . é_%l(card Apq * 'R AT 1,
and if for an i€I there 18 A, (A,...,A) = (by,..cyb )€
@ (1)
€ QnAEMFA, then {b,l,...,bn'i € AN Ap.

For any 1€ I define £5: (A v f A} )V(i)—> exp & by
fi(al”"'acy(i)) = § bl,...,bn} y if A‘K(a’l”"’ega(i)) =
= (H’...’bn)’e QnAsMFA, fi(%.".. 'a?(i)) =¢ otherwise.

Choosez:)xo,yoe AN Yy VA £;(a); ac (Apq v
VAN e ey,
xp071€ Anog N U, U4 £(a); ae (a5 u 4A ,x,,y )9 VE
X% g5
xp€ Anp N APV 2,(a); e (A s UA x5 .5 3,309 0
xg€ Ang N VU ig(a); ae (An-,j-a.u'“\ R A
X3peeesXjn )91) eon J =3,00.,n =1,

II. Now, we prove the following assertion:

(1) Each of the elements a = (xo'xl’XZ""’xn-l)v b=
= (xo,yi,xa,...,xn_l), c = (yo,xl,xz,...,xn_,l), d = (yo’y’l’
xg""'xn-'l) occurs exactly once in the word
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AA(xoyo,xlyl,xz,... ’xn-’l) € MFA.
(i1) Each of the elements a,b (a,c resp.) occurs ex-
actly once in the word
AA(xo,xtlyI,&,aa.,xn_i}
( ﬁl&(xo‘yo’xl’xz"”’xn-‘l) resp.).
Proof. (i) Let z = (zo,zi,...,zn_a)e {xo,yoi x
x{xi’yig x {XZ}X ese X {xn_q; .
Define oc,: A—>MA by
“z(‘;j) = 25 for J=0,00eyn -1
«,(x) = A for x*zd.

Then according to the first distributive law,
A,F(¢ oc¥,) (XY g1 Xq Ty sXpseeesX ) = z €MFA,
and aceording to the second distributive law,
2= (ﬂ,AE(«,zH# Apx T 01Xy Ty sXyreeesXpy q)e
Let A‘Cxoyo,xiyvxz,...,xn_a) = Wj..eu € MFA, From
(A FCoc ) (uyeeony) = ze PASMPR

follows that there is exactly one j 6 £1,...,k § such that
a;AF(“z)(UJ) E 3 A ’ A.AF(GZ)(\;J) = Ze
Let uJ = (v.l,...,vs)er&SFA.
There are two possibilities:
(@) {v,eee,v58c 4 ZoreeesZpn g
(b) {vl,...,VSQ\ {zo,-oo’zn_/l; + g.
In the case (a) there is
m,lF(xz)(uJ) = A,luy) = (Vgyeeeyvg) € QA S MFA

and necessarily s = n, (v4,...,v,) = (zo""’zn-'l)'
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In the case (b) there is
Flecy) (uy) = (tgyee0,tg)e QA U £AS ) FMA and Aeity,..

N
It is evident that

J=4£J€i0,...,n ~1%; xy4t, for p =4,...,8, and 1f j<

also yy*t, for p = Lyeeuss i,

Suppose JeJ, 8 = o (1); a‘(ta,...,t,) =z 18 & word of

length 1 and therefore &&(ti,...,t’) =z = (zo"“'zn-d)'

120000002 4 F = £ (tg,000,t5) €14 1L5(a); ae “n-J-d v

VLA 1X01T 1%y 13 1X5p0 009X gy ¥ )9’(“} which contradiets

the assumption z € { Xy, ¥odx 1 X,y ¥ x{ x3¥x s

vee x{xn_:l; .
(11) The proof is analogous.

III. Now, we can finish the proof of Fropoal tion. We
can assupe without loss of generality that (xo,.x,_,...,xn_,l)
is the first element of the set

-{xo,yo}x { x‘l’yllix i xzfx eees X ‘ixn_’l}
which occurs in the word
&A(onogxalyl,xz,o-o ’xn_,l)o
(Ioea a,A(xoyo,mlyl,!e,o..,xn_q) = eee (xo,x,l,--. 'xn_’l) coe
cee (xb,y,l,ngoo-,xn_’_) eee = s0e (xo,xi,...,xn_l) X
see (yogﬁ,-o.,xn_,l) veoe )
Define o : A& —> MA by

< (x5} = x4y

x(y,) = A,

« (x) = x otherwise,

From the second distributive law and from II (ii) it follows
that the element (¥,sXq,e..,X; ) occurs in the word
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Am(xoyoyﬁyi’xz,...,xn_i)

before the element (xo,yi,xz,...,xn_,l).
(Toee Aplx ¥ sXq¥gsXpseeesXpg) = oo (Xg9XgreeesXpn) oee
ces (yo’x’l""’xn-l) ces (xo'yﬂ.’XZ"”’xn-’L) ees )
Define o¢’: & —>MA by

<’ (xl) = X ¥

or.'(y,l) = A,

o’ (x) = x otherwise.

By a similar reason, the elemermt (X ,¥jsee+X,_4) occurs
in the word Z,A(xoyo,x,ly,l,xz,...,xn_l) before the element
(yo,xi,...,xn_,l).

This contradiction finishes the proof of Proposition.

l.2. Corollary. Q, cannot be extended to the Kleisli

category of Mon.

4+
1.3. Proposition. F = \Z‘l Q, satisfies distributive

m
Iaws over Mon.

Proof. Let & be a set. Define A ,: FMA —> MFA by
A‘A(xlﬂ."‘xﬂlkﬂ_"“’xlﬂ."'xnkn) = (xii’ﬁz""’xnkn)‘ le *
+ ..ok ASFASMFA for Ky + ... *+ k>0,

-’/\h(/\,...,/\) = A .

4
(1) FMA —— > MFA
R Q
A
F& FA

commutes because

Ay Flep) (XnyeoesXp) = AplxgseeesXpy) = (Xg,000,x)) =
e e

= eFA(x.l,...,xn).

- 325 -



(11) FMA =~ MFA

*
Flac) (Ag.Flex))

*s

FMB

commutes for any o : A—>MB because
s =
( KBFQO(«))» lﬂ(xli...xikl,...,xnl...xnk ) =

= (A Flec ¥ ( geeesXy ) = (AgF(oc))( geoeyX o ) =
pf xu nk, aF x99 nk,

( (
(1) myq ) (1) “’nk
=Aplyy’eeevns reeeaVnic *c*Vnk =

(m 5)
= (y(%),yu_,...,ynk ) where ac(xij) = y%)...yizid ,
and ABF(ec")(x,ll...xiki,...,xm...xnk ) =
(myy ) (mnk )
(1) ky (1) -
Aplyan’eeednyg * oveeeaVnnee oYy "=

(mnk )
(2) ny.
’y'l‘l "“’ynk 3

(y D

"

obviously ( AgFlec))¥® A, (A,.ccyA) = A = AgFlac¥)(A,...
eeeyN)e
This finishes the proof.

2.1. Remark. The propositions presented show that it
is not so easy to decide whether a functor satisfies distri-
butive laws, or not. The question is open even for sums of
Q,’s and the monad Mon. {

Define, for a moment, a "suitable"” subset of N by the
following equivalence: S is "suitable" iff mYS Q, satis~
fies distributive laws over Mon. It follows from [1] and from
Propositions 1.1 and 1.3 that {1} and N are "suitable™, but
every bounded subset of N whiech is not equal to {13 is not
"suitable”,
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2.2, Problem. Characterize all the "suitable" subsets
of N.
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