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GRAPHS WITH PRESCRIBED MAXIMAL SUBGRAPHS AND CRITICAL
CHROMATIC GRAPHS
Heinz-Jurgen VOSS, Ilmenau

.

Abstract: It is proved that k-chromatic-critical graphs
of large order contain large subgraphs of a certain structu-
re. One of these results is that each large k~chromatic-cri-
tical graph contains a large odd circuit. A more general re-
sult is that if a large 2-connected graph G contains sub- .
graphs of a certain structure of order N but not of order >N
then G contains at least two dis%gint isomorphic subgraphs
not linked by an edge which are "isomorphically"connected to
the rest G - Hy - H2 by edges. A so-called p-reduction is stu-

died for such graphs.

Key wordg: Critical chromatic graph, subgraph, p-reduc-
tion.

AMS: 05C15 Ref. Z.: 8.83

1. Graphs with prescribed maximal subgraphs. We consider
undirected finite graphs without loops and multiple edges. If

we handle with infinite graphs we say this explicitly. Furth-
er definitions are used as in L15]. We say that a path t is

a topological edge in a graph G, iff all inner vertices have
in G the valency 2 and the two endvertices have a valency = 3.
The class K of finite graphs is said to have property E if for
each graph GE K it holds: If t is an arbitrary topological
edge only the endvertices of which are contained in G then

G + t contains a subgraph G’e K with t£G’,
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Now we will present a few of such classes. A graph G is said
to be contractible to a graph G’ iff there exists a homomor-
phism ¢ from G onto G’ with the properties:

1) For each vertex X of G° it holds: The spanning sub-
graph of the vertex set 9-1(1{') in G is a tree.

2) For each pair 4X°,Y’} of different vertices of G~ it
holds:
a) cy-l(X') and sp-l(Y') are joined by at most one edge.
b} X and " are joined by an edge in G’ iff ¢ “(X') amd
@ fl(Y') are joined by an edge.
That means G  can be obtained from G by consecutive contract-
ions of edges not contained in triangles,
A prismgraph consists of two circuits, which have at most one
common vertex and which are united by three vertex-disjoint
paths; if the two circuits have a common vertex then one path

has length O,

Theorem 1: The class W of all paths , the class C of all
circuits, the class O of all odd circuits, the class P of gll
prismgraphs, the class ¢ r,S> of all 2-connected graphs con-
tractible to a complete r-graph (v=4) and the class V(s;,3,,
33,8‘,...,81)) have property E.

Each graph of the latter class can be formed as follows: We

start with a set{H;j} of 8) + 8, * 83 +8, + ... *5 pair-

p
wise disjoint graphs; sy of which are isolated vertices, 859
8398410008, 8T graphs of C, P,< 4,85 ,...,<{p,S> , respec™
tively. Then we consecutively link two components by a topo~-

logical edge until we have obtained a comnected graph. V(sl)
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is the set of all trees with at most 8, endvertices. V(sl,s2)
ié the set of all Husimi trees with at most s; vertices of

valency 1 and exactly s, circuits.

Proof of Theorem 1: Let Ge WUCUVOUVPU ... and let Vl,

V., be the two different endvertices of a topological edge w

2
with Gnw =4V,,V, % .

a) Obviously, W and C have E.

b) Let G€ O. The two circuit arcs of G between V; and V, ha-'
ve different parity. Let t denote the one which has the same
parity as w. Then G + W = t€ O with weG + w - t,.

¢) For the class P the proof can easily be obtained by distin-
guishing some cases.

d) Let Ge<r,S> and let G’ denote a complete r-graph. We

have only to consider two cases:
1) There exists one vertex X' of G~ and a homomorphism
@ of G onto G  such that V1,V € ?_I(X'). The spanned sub-
graph U of cy'l(x') is a tree, therefore U + w contains ex-
actly one circuit C.
Let e be an edge of C not contained in w. We delete in G + w
the topological edge t of G + w containing e and we have a
new tree U + w = t. It is easily to be seen that with
P(U+w=1t) =4, X" we have G + w - te <r,S> .
2) There exist two different adjacent vertices X" and Y~
of G* and @ homomorphism ¢ of G onto G  such that V; &
e g?'l(x') and V, € 99-1(1"). Then there is in G an edge e
connecting q)-l(x') and cy—l(Y'). Let t denote the topologi-
cal edge of G + w containing e. Now it can easily be seen

that w&€G + w =t and G + w - t is an element of <{ r,S) .Thus
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the proof of d) is complete.

e) Let GCeV(sy,eeey8,). If waly =4V,,V, § then the vali-

dity of the Theorem can easily be derived from a) ... d)., If

for all j it holds lwn H,j €1 then G + w has a circuit con-

taining w and a topological edge t with tnw & {Vl,Vz} and for

all J it holds It NHy l €1, Then w&G + w = tEV(al,...,sp).
Q.e.d.

Remark: The class of all circuits containing a certain
vertex X also has property E but the class of all circuits
containing two certain vertices X and Y has not property E,

Theorem 2: a) Let K denote a class of finite graphs
with property E and let N be a positive integer. Let G be a
2-connected (finite or infinite) graph which contains a graph
He K of order N but which does not contain an element of K of
order > N, Then the length 1 of a meximal circuit L of G 1is
1482,

b) If K =0 then & 2(N - 1),

In a) the bound is not best possible. That in b) the bound is
best possible is shown by the graph which consists of two ver—
tices of valency 3 which are linked by an edge and by two to-
pological edges of length N - .£(N odd).

By Theorem 2b in each 2-connected nonbipartite graph G it
holds £* ¢ £ £2(@* - 1) where £, & * denote the maximal cir-
cuit length and the maximal odd circuit lenrgth, respectively
(provided £* exists).

A similar assertion for the maximal even circuit length does
not hold. G.A. Dirac proved in [2] that in 2-connected finite
graphs it holds that £ - léfélz where £ denotes the maximal
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path length of G. It can be shown that £ - 124 8%/4 (see
G.A. Dirac [2], see also [15] and[13] . In the following

A (H) and o(H) denote the number of edges or vertices of H,

respectively.

Proof of Theorem 2: a) We distinguish two cases.

1) Let ULAHIH £1. Then there exist two disjoint paths Wy,
w, connecting L and H (possibly Alwy) = 0), Let Xy =gepWyN H
and Y:l =3e£"1N L. Let Ll’ Lz denote the two circuit srcs of L'
between Y; and Yo pgy =wy + Ly *w, (1 =1,2) are two

paths with p;n H = {Xl,Xzi .

By Theorem 1 it follows that H + Py contains a subgraph Hi
with piE Hie K. Therefore

Alwy) + A(Ly) + Alwy) = .R.(pi) < o(Hi)s o(H) = N,
Hence A (L;)4N -1 and 2 = A(L)£2(N - 1),

2) Let ILAHIZ 2. Then L can be split up in arcs L;,L,,...
...,Lq such that for each i it holds:
Either Lin H = Ly or LynH = 4P},P} § where P}, P} are the
two endvertices of Ly. In both cases we have A(L;)4 o(H) =
=N (in the case Lyn H B{Pi,Pgﬁ see 1)). Because q<N it
follows WA (L)& N2,

b} Let HeO, If L is and odd circuit A(L) = o(H) = N,
Now let L be an even circuit.
If IHALJl €1 the assertion b) of the Theorem follows from
the proof al).
Now let [HALIZ 2. Let P and Q be two arbitrary vertices of
HA L. Because He O and L is an even circuit the parity of one
of the two circuit arcs of H between P and Q is different from
the parity of the two circuit arcs of L. between P and Q. From
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this it can easily be derived that there exists a circuit
arc H of H with | HALl = 2 and the parity of H is different
from the parity of the two circuit arcs Ll,Lzlof L connect-
ing the two vertices of HAL in L. Hence Li + He O and

AL +2 2@ = AL + T + AL, + Mz N,

With A(H)2 1 the Theorem 2 is proved.

Let p be a positive integer. Now we will define the so call=-
ed p-reduction of finite and infinite graphs described in
[15]. Two finite subgraphs U;, U, of a finite or infinite
graph G are called independent, if they do not have a common
vertex and if they are not connected by an edge. Two finite
subgraphs Uy, U2 of G are called equivalent, if U, = U2 or if
Ul and U2 are independent and there exists an isomorphism of
the grap G - Ul onto the graph G - U2 such that all verti-
ces of G ~ Uy - U, are fixed.

Let M be a class of pairwise independent finite subgraphs of
G, then the above formulated so called equivslence is an equi-
valence relation in M. Therefore M is divided in equivalence
classes. From each equivalence class with more than p elements
we delete in G so many elements of this equivalence class that
in G only p elements remain. We call this deletion an "elemen-
tary p-reduction". ‘

A sequence of a finite number of elementary p-reductions is
called a p-reduction. If the obtained graph is denoted by G’
then we write G & G’

Let K be a class of finite graphs with property E. Let N be

an integer.

Z(K,N) denotes the class of all 2-connected finite and

- 134 -



infinite graphs which contain an element of K of order N but
which do not contain an element of K of order > N. For this
class we can prove a finiteness condition in the following
senge:

Each large graph Ge Z(K,N) contains p + 1 equivalent subgraphs;
that means to each positive integer p there exists a positive
integer n(p,K,N) such that every Ge Z(K,N) of order = n(p,K,N)

contains p + 1 equivalent subgraphs. We define

« (C,N) =[%] +1and B(C,N) =[%] -1,

«(0,N) = N and  R(O,N) = N - 2,

(K, N) = B(K,N) = [N/2] # 1, 1f K4C, K+0.

Theorem 3: Let p, N be integers with N>3 and p = « (K,N).

Then

a) To each Ge Z(K,N) there exists a p-irreducible graph G’
with G & G”. The graph G’ can be obtained from G by a sequence
of at most 3 (K,N) elementary p-reductions.

b) Every p-irreducible graph G’ with G'< G is up to isomor-
phism uniquely determined, is finite and it is also ¢'e

e Z(K,N).

¢) Z(K,N) only contains a finite number of unisomorphi p—
irreducible graphs.

In Theorem 3a) for some graphs of Z(C,N) and Z(0,N) we really
need 3 (C,N) = ['9_1!']' lor [3(0,N) =N - 2 elementary p-re-

ductions, respectively, to obtain the p-irreducible graph.
For 2(C,N) we have shown this in [15]. For 2(O,N) this is pro-
ved by the following graph:
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We consider a tree T with a root X such that the distance
between X and each endvertex is N - 2, that each inner vert-
ex has a valency 2p + 1 and that every two inner vertices
have different valencies. To this tree we add a new vertex Y
and link it with X and the endvertices of T by edges.

Let GoX denote the graph obtained from a graph G by ad-
ding a new vertex X and linking X to each vertex of G by an
edge. Let E(W,N) be the class of all connected graphs contain-
ing a path of length N but no path of length >N, Then G e
¢ Z(W,N) iff GoXe Z(C,N + 2)., Therefore it yields the

Remark: The Theorem 3 is also valid for Z(W,N) with

< (W,N) =[%’-] +2and f3(w,N) =[%J .

Proof of Theorem J: In the case K = C the Theorem was:
proved in [15], it is not proved here again. If K& C then from

Theorem 2 it follows:

2(N-1)
z(o,N) & ;}./N z(Cc,i) and

z(rz,w);%_/3 z(C,i), if K#0.

By applying the result already known for Z(C,i) we obtain the
Theorem also in the case that K+ C. It remains only to show
that if Ge Z(K,N) and G & G’ then G’ contains a subgraph of
K of order N, But this can easily be done by taking the follo-
wing into consideration: If He K, HEG and o(H) = N, then each
p-reduction can be chosen such that no vertex of H is deleted

(notice that p2 N if K#C and p2N/2 + 1 if K = C), Q.e.d.
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2., Critical chromatic¢ graphge In 2. we only consider
finite graphs. The chromatic number of a graph G is denoted

by o (G). A graph is called k-critical, iff its chromatic
number is k and by the deletion of an arbitrary edge the re-
sulting graph has the chromatic number k - 1. In this paper
only k-critical graphs with k=3, are considered.

Lemma: Let G, G' be graphs with G & G'. Then
(G = x(6).

Proof: It suffices to show that if U; and U? are two
equivalent subgraphs of G then g (G - UZ) = 2(G). But this
can be seen by the fact that each suitable colouring of G -
- Uz can be extended to a suitable colouring of G by giving
the same colour to the vertices X and ¢ (X) for each XeU;
whereby ¢ denotes an isomorphism of G - U, onto G - U; with
fixed G - Uy - U,. Q.e.d.

It is well known that each critical graph is 2-connected.
Z(K,N,k) denotes the set of all k-critical graphs Ge Z(K,N),

Theorem 4: Let X be a class of graphs with property E.
Then Z(K,N,k) contains only a finite number of nonisomorphiec
graphs.

Proof: The Lemma shows that all graphs Ge Z(K,N,k) are
l-irreducible and also p-irreducible. Because Z(K,N) only con-
tains e finite number of p-irreducible graphs (Theorem 3) the
truth of Theorem 4 follows from Z(K,N,k)& Z(K,N). Q.e.d.

Theorem 4 states that each k-critical graph of large or-
der which has an element of K as a subgraph contains also a
large graph of K. If F(K,n,k) is the largest integer such that

every k-critical graph of order n which has an element of K
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as a subgraph, contains a subgraph of K of order = F(K,n,k)
then

(1) lim  F(K,n,k) = + co .
m - O

Obviously, for k=3 each k-critical graph contains a subgraph
H e é and a subgraph H e 0. Thus each large k-critical graph
contains a large circuit and also a large odd circuit. The
first assertion was proved by J.B. Kelly and L.M. Kelly [101]
in 1954, the second assertion gives an answer of case 72¢ = 3
of the question posed by J. NeSetfil and V. Rodl at the Inter-
national Colloquium on Finite and Infinite Sets held in 1973

in Keszthely in Hungary(oral communication):

Problem: Let 2 ,k,N be arbitrary positive integers with
% < k. Does there exist a positive integer n such that each
k-critical graph G with at least n vertices contains a 2¢ -cri-
tical subgraph G” with at least N vertices?

The order of the magnitude of F(C,n,k) was investigated
by J.B. Kelly and L.M. Kelly [10], G.A. Dirac [3] and R.C. Read
[12]. T. Gallai [8] has obtained a sharpening of these results
by showing that for an infinite set of different positive in-
tegers n there exist k-critical graphs of order n of maximal
circuit length £ Cx log n, where c, is an appropriate con-
stant. From Theorem 2b) it follows that F(C,n,k) and F(O,n,k)
have the same magnifdde. \

It also yields thét the result "each large k-criticasl graph
contains a large odd circuit" can be derived from the result
of Kelly/Kelly "each large k-critical graph contains a large

circuit"” by means of Theorem 2b.
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Before discussing other clasgses K we define: If r 23,
then a topological complete r-graph consists of r branching

n
2

branching vertices are linked by exactly one topological ed-

vertices and of( ) topological edges such that every two

ge. {r,U) denotes the class of all topological complete r-
graph .

G.A. Dirac [1] has proved that each 4=-critical graph con-
tains a ¢ 4,UY . B, Zeidl 116 ) has shown that for k>4 each .
k-critical graph has a ( 4,U7%, containing a circuit of odd
lengthe.

In (4] G.A. Dirac has proved that each circuit of & 4-criti-
cal graph is contained in a (4,U) . If we apply this result
to the largest circuits and to the largest odd circuits, then
we obtain from (1) with respect to K = C and K = 0: For k>4
each large k-critical graph has a large (4,U% and also a
large ( 4,U)> containing a circuit of odd length, respective-
ly.

In this paper I proved the first statement again (see
(1)) but I cannot reprove the second statement with the aid
of Theorem 3 because the class of all graphs of {4,U) cont-
aining an odd circuit has not property E.

Because each k-critical graph has no vertex of valency £k - 2,
every k-critical graph of order n has > —;_- (k-1 n edges.

This lower bound was improved by T. Gallai [8Jand G.A. Dirac

(6]. For X26 each k-critical graph contains at lest S n

2
edges. A result of G.A. Dirac [5) says that each simple graph

of order n~ 5 with at least % n-3 edges contains a graph
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obtained from a graph of the class ( 5,U) by deleting one
and only one topological edge. Because this graph has a spe-
cial prismgraph it follows: For k26 each k-critical graph
contains a prismgraph and with (1) each large k-critical
graph contains a large prismgraph.

K. Wagrer [14](H.,A. Jung [9)) has proved: For every po-
gitive integer r there exists an integer kr (an integer k; )
such that for all positive integers k2k, (kal: ) each k-
critical graph contains a (r,S)» (a (r,U) ) - also see W.
Mader [111. By (1) from this it follows: For all k2 k, each
large k-critical graph contains a large <(r,S>.

But by our methods it cannot be shown that for all kzk;
each large k-critical graph contains s large {r,U ) becau-
se (r,U) has not property E. We do also not know whether
this assertion is true.

By definition we have

R‘k{QZ(K,N,k)E Z(K,N).

Because by Theorem 3¢ the number of nonisomorphic graphs of
Z(K,N) is finite we have that there exists a positive inte-
ger k(K,N) such shat Z(K,N,k) = § for all kZ k(K,N). By & re-
sult of P, Erdos and H. Hajnal we can take k(O,N) = N + 2 be-
cause they showed in [ 7]: Every graph which does not contain
circuits of lengths 2j + 1 for all j>~ 1 is suitable colour-
able by 21 colours.
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