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COMMENTATIONES MATHEMATICAE UNIYERSITATIS CAROLINAE 

1 8 , 1 ( 1 9 7 7 ) 

GRAPHS WITH PRESCRIBED MAXIMAL SUBGRAPHS AND CRITICAL 

CHROMATIC GRAPHS 

H e i n z - J u r g e n VOSS, I lmenau 

Abstract: I t i s proved that k - c h r o m a t i c - c r i t i c a l graphs 
of large order contain large subgraphs of a cer ta in s t r u c t u ­
r e . One of these r e s u l t s i s that each large k-chromat ic -cr i -
t i c a l graph contains a large odd c i r c u i t . A more general r e ­
s u l t i s that i f a large 2-connected graph G contains sub - . 
graphs of a c e r t a i n s tructure of order N but not of order > N 
then G contains at l e a s t two dis.loAnt isomorph ic subgraphs 
not l inked by an edge which are isomorph ical ly"connected t o 
the res t G - Ĥ  - I.U by edges . A s o - c a l l e d p -reduct ion i s s t u ­
d ied for such graphs . 

Ke.v words: C r i t i c a l chromatic graph , subgraph, p -reduc-
t i o n . 

AMS: 05C15 Ref# 2 . : 8 .83 

1. Graphs with prescribed maximal subgraphs. We consider 

undirected finite graphs without loops and multiple edges. If 

we handle with infinite graphs we say this explicitly. Furth­

er definitions are used as in L151. We say that a path t is 

a topological edge in a graph G, iff all inner vertices have 

in G the valency 2 and the two endvertices have a valency 2S 3. 

The class K of finite graphs is said to have property E if for 

each graph GeK it holds: If t is an arbitrary topological 

edgfr only the endvertices of which are contained in G then 

G • t contains a subgraph G'e K with t£.G'. 
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Now we wil l present a few of such clas3es. A graph G i s said 

to be contractible to a graph G i f f there exists a homomor-

phism jp from G onto G with the properties: 

1) For each vertex X of G i t holds: The spanning sub­

graph of the vertex set <f" (x') in G i s a tree. 

2) For each pair Ax',Y'j of different vertices of G' i t 

holds: 

a) Cf" (x') and <f>~ ( Y ' ) are joined by at most one edge. 

b) x ' and Y' are joined by an edge in G' i f f cp "^(x') and 

y ( Y ' ) are joined by an edge. 

That means G' can be obtained from G by consecutive contract­

ions of edges not contained in triangles. 

A prismgraph consists of two circuits , which have at most one 

common vertex and which are united by three vertex-disjoint 

paths; i f the two circuits have a common vertex then one path 

has length 0 . 

Theorem 1: The class W of a l l paths , the class C of a l l 

c ircuits , the class 0 of a l l odd c ircuits , the class P of a l l 

prismgraphs, the class < r,S > of a l l 2-connected graphs con­

tractib le to a complete r-graph (vi-M) and the class V(s lfS2> 
s3 , s4'**#» sp .) have property E. 

Each graph of the latter class can be formed as follows: We 

start with a set AEA of 3-̂  • &~ * s-* * s . + . •• • s pair-

wise d isjoint graphs; s^ of which are isolated vertices, s^t 

s-r»9Sj,,.. ,3 are graphs of C, F, < 4, S > , . . . , < p,S > , respec­

t ive ly . Then we consecutively link two components by a topo~ 

logical edge until we have obtained a connected graph. V(s,) 
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is the set of all trees with at most s1 endvertices. V(slfs2) 

is the set of all Husimi trees with at most s-̂  vertices of 

valency 1 and exactly s2 circuits. 

Proof of Theorem 1: Let Ge Wu C u O u Fu .. • and let V-,, 

V?2 De *ne two different endvertices of a topological edge w 

with Gnw sr-lV^Vg J . 

a) Obviously, W and C have E. 

b) Let G€ 0. The two circuit arcs of G between V-̂  and V̂  ha- * 

ve different parity. Let t denote the one which has the same 

parity as w. Then G + W - t€ 0 with w£G + w - t . 

c) For the class P the proof can easily be obtained by d i s t in ­

guishing some cases. 

d) Let G € < r,S > and let G denote a complete r-graph. We 

have only to consider two cases: 

1) There exists one vertex X of G and a homomorphism 

cp of G onto G' such that VlfV2 £ <f~ ( x ' ) . The spanned sub­

graph U of cp (x') i s a tree, therefore U + w contains ex­

actly one circuit C# 

Let e be an edge of C not contained in w. We delete in G + w 

the topological edge t of G + w containing e and we have a 

new tree U + w - t . It i s eas i ly to be seen that with 

9? (U + w - t ) ~de£ X' we have G + w - t e < r,S > • 

2) There exist two different adjacent vertices x ' and Y' 

of G' and a homomorphism cp of G onto G such that V-̂  e 

e cp"""1^') and V^ e <p ( Y ' ) . Then there i s in G an edge e 

connecting cp" (x') and 9 ~ (Y'). Let t denote the topologi­

cal edge of G + w containing e. Now i t can easi ly be seen 

that w£G + w - t and G + w - t i s an element of < r,S> .Thus 
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the proof of d) i s complete. 

e) Let GcV(s 1 s ) . If wnHj » iV-^Vg, i then the v a l i ­

d ity of the Theorem can easi ly be derived from a) . . . d ) . If 

for a l l j i t holds HwnHj II ** 1 then G + w has a circuit con­

taining w and a topological edge t with tn w £ ^vx , V2^ a n ( i f o r 

al l i i t holds lit nHj II 4s 1. Then wffG + w - t fe V(s l f . . . f s ) . 

Q.e.d. 

Remark: The class of all circuits containing a certain 

vertex X also has property E but the class of all circuits; 

containing two certain vertices X and X has not property E# 

Theorem 2; a) Let K denote a class of finite graphs 

with property I and let N be a positive integer. Let G be a 

2-connected (finite or infinite) graph which contains 9 graph 

H€ K of order N but which does not contain an element of K of 

order 5> N. Then the length 1 of a maximal circuit L of G is 

l^N2. 

b) If K = 0 then X& 2(N - 1 ) . 

In a) the bound is not best possible. That in b) the bound is 

best possible is shown by the graph which consists of two ver­

tices of valency 3 which are linked by an edge and by two to­

pological edges of length N -^(N odd). 

B|y Theorem 2b in each 2-connected nonbipartite graph G it 

holds X* & & 6 2(£* - 1) where i, i* denote the maximal cir­

cuit length and the maximal odd circuit length, respectively 

(provided Z* exists)• 

A similar assertion for the maximal even circuit length does 

not hold. G.A. Dirac proved in [23 that in 2-connected finite 

graphs it holds that -£ - l^Jf^Z where I denotes the maximal 
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path length of G. It can be shown that £ - l&JL&Z / 4 (see 

G.A. Dirac [23, see also [15] and[13j . In the following 

X(H) and o(H) denote the number of edges or vertices of H, 

respectively. 

Proof of Theorem 2: a) We distinguish two cases, 

l ) Let IlLnHll £ 1 . Then there exist two d isjoint paths w-̂ , 

w2 connecting L and H (possibly X(vf^) * 0)» Let X̂  =tae£Win H 

and Ŷ  —ag-pŵ n L. Let L ,̂ Lg denote the two circuit arcs of L* 

between Ŷ  and Yg. Pi a *i * L i * *^ ll * 1,2) are two 

paths with p̂ A H » 4XlfX2$ . 

By Theorem 1 i t follows that H • p^ contains a subgraph Ĥ  

with p iS E±€ K. Therefore 

A(wx) • &(l±) • A(w2) • Xip±) 6 o(H i)^o(H) - N. 

Hence A(L jL)6N - 1 and / . =* A(L)^2(N - 1 ) . 

2) Let II LA H II > 2. Then L can be sp l i t up in arcs L-^I^,. . . 

. . . , L such that for each i i t holds: 

Either L ^ H -* L± or L-jA H » -f pj,P2 f where pf, P | are the 

two endvertices of L^. In both cases we have X{1*±}& o(H) =* 

= N (in the case L r̂. H =* 4.Pi*-P§ 3 see I))* Because q^N i t 

follows JUL)*!!2 . 

b) Let HeO. If L i s and odd circuit A(L) » o(H) » N. 

Now let L be an even c ircuit . 

I f HHALII 6 1 the assertion b) of the Theorem follows from 

the proof a l ) . 

Now let H H A L | | > 2. Let P and Q be two arbitrary vertices of 

H A L . Because HeO and L i s an even circuit the parity of one 

of the two circuit arcs of H between P and Q i s different from 

the p&rity of the two circuit arcs of L between P and Q. .From 
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th i s i t can easi ly be derived that there exists a circuit 

arc H of H with || HnL|| « 2 and the parity of H i s different 

from the parity of the two circuit arcs Lj,L~ of L connect­

ing the two vertices of HnL in L. Hence L i + HeO and 

&(D • 2 :A (H) « ^(L x + H) • X(L2 + H)fi2N, 

With A(H)>1 the Theorem 2 is proved. 

Let p be a positive integer. Now we will define the so call­

ed p-reduction of finite and infinite graphs described in 

[153. Two finite subgraphs Ulf U? of a finite or infinite 

graph G are called independent, if they do not have a common 

vertex and if they are not connected by an edge. Two finite 

subgraphs U^, U2 of G are called equivalent, if U^as U.> or if 

U^ and U 2 are independent and there exists an isomorphism of 

the grap G - U^ onto the graph G - U2 such that all verti­

ces of G - U, - U2 are fixed. 

Let M be a class of pairwise independent finite subgraphs of 

G, then the above formulated so called equivalence is an equi­

valence relation in M. Therefore M is divided in equivalence 

classes. From each equivalence class with more than p elements 

we delete in G so many elements of this equivalence class that 

in G only p elements remain* We call this deletion an "elemen­

tary p-reduction". 

A* sequence of a finite number of elementary p-reductions is 

called a p-reduction. If the obtained graph is denoted by G' 

then we write G y G'. 

Let K be a class of finite graphs with property E. Let N be 

an integer. 

Z(K,N) denotes the class of all 2-connected finite and 
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i n f i n i t e graphs which contain an element of K of order N but 

which do not contain an element of K of order > N. For t h i s 

c l a s s we can prove a f i n i t e n e s s cond i t ion i n the fo l lowing 

sense: 

Each large graph Ge Z(K,N) contains p + 1 equivalent subgraphs; 

that means to each p o s i t i v e in teger p there e x i s t s a p o s i t i v e 

in teger n(p,K,N) such that every GeZ(K.N) of order a n(p,K,N) 

contains p + 1 equivalent subgraphs. We def ine 

oc(C,N) * [ j] + 1 and /J(C,N) -* [ j ] - 1 , 

oC(0,N) ~ N and (i (0,N) =- N - 2 , 

oC(K,N) =r /S(K,N) * [ 1 ^ / 2 ] * 1, i f K#-C, K#-0. 

Theorem 3 : Let p, N be integers with N > 3 and p > o6(K,N). 

Then 

a) To each Ge Z(K,N) there e x i s t s a p- irreducib le graph G 

with G y G . The graph G can be obtained from G by a sequence 

of at most /3 (K,N) elementary p-reduct ions . 

b) Every p- i rreduc ib l e graph G with G'-4 G i s up t o isomor­

phism uniquely determined, i s f i n i t e and i t i s a l so G'd 

e Z(K,N). 

c) Z(K,N) only contains a finite number of unisomorphi p— 

irreducible graphs. 

In Theorem 3a) for some graphs of Z(C,N) and Z(0,N) we really 
r JY i need [J (C,N) « [—J- i or ft (0,N) =- N - 2 elementary p-re-

ductions, respectively, to obtain the p-irreducible graph. 

For Z(C,N) we have shown this in [15]. For Z(0,N) this is pro­

ved by the following graph: 
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We consider a tree T with a root X such that the distance 

between X and each endvertex is N - 2, that each inner vert­

ex has a valency •> p + 1 and that every two inner vertices 

have different valencies. To this tree we add a new vertex X 

and link it with X and the endvertices of T by edges. 

Let GoX denote the graph obtained from a graph G by ad­

ding a new vertex X and linking X to each vertex of G by an 

edge. Let Z(W,N) be the class of all connected graphs contain­

ing a path of length N but no path of length >» N. Then G e 

& Z(WfN) iff G<?Xc Z(C,N * 2). Therefore it yields the 

Remark: The Theorem 3 is also valid for Z(WfN) with 

S(W,N) ~[y] • 2 and J5(W,N) =*[yj • 

Proof of Theorem 3: In the case K = C the Theorem was: 

proved in 1153, it is not proved here again. If K4*C then from 

Theorem 2 it follows: 

2(N-1) 

Z(OfN)£ S-̂ u Z(Cfi) and 

N2 

Z(K,N)s^^ Z(C,i), if K#0. 
Is 3 

By applying the r e su l t already known for Z(C,i) we obtain the 

Theorem also in the case that K-# C. I t remains only to show 

that i f GfeZ(KfN) arid G S- G' then G ' contains a subgraph of 

K of order N. But th i s can easi ly be done by taking the fo l lo ­

wing into consideration: I f HeKf HSG and o(H) = Nf then each 

p-reduction can be chosen such that no vertex of H i s deleted 

(notice that p>N i f K4-C and p2N/2 • 1 i f K =* C). Q.e.d. 
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2* C r i t i c a l chromatic graphs. In 2 . we only consider 

f i n i t e graphs. The chromatic number of a graph G i s denoted 

by ^ ( G ) . A graph i s ca l l ed k - c r i t i c a l , i f f i t s chromatic 

number i s k and by the d e l e t i o n of an arb i t rary edge the r e ­

s u l t i n g graph has the chromatic number k - 1 . In t h i s paper 

only k - c r i t i c a l graphs with k .2.3 , are considered. 

Lemma: Let G, G' be graphs with G J- G ' . Then 

^ ( G ' ) = £ ( G ) . 

Proof: I t s u f f i c e s t o show that i f U^ and U^ are two 

equivalent subgrapha of G then ^,(G - U^) » .^(G). But t h i s 

can be aeen by the fact that each s u i t a b l e colouring of G -

- U^ can be extended to a s u i t a b l e colouring of G by g i v i n g 

the same colour to the v e r t i c e s X and cp(X) for each X&Ui 

whereby <f> denotes an isomorphi3m of G - U2 onto G ~ ^x ^ ^ 

f ixed G - Ux - U2. Q.e .d. 

It i s wel l known that each c r i t i c a l graph i s 2-connected. 

Z(K,N,k) denotes the s e t of a l l k - c r i t i c a l graphs Ge Z(K,N). 

Theorem 4: Let K be a c las3 of grapha with property E. 

Then Z(K,N,k) containa only a f i n i t e number of noniaomorphic 

grapha. 

Prooff: The Lemma ahows that a l l graphs G6Z(K,N,k) are 

1- irreducib l e and alao p - i r r e d u c i b l e . Because Z(K,N) only con­

ta ins a f i n i t e number of p- irreducib l e graphs (Theorem 3) the 

truth of Theorem 4 fo l lows from Z(K,N,k)£ Z(K,N). Q.e.d. 

Theorem 4 s t a t e s that each k - c r i t i c a l graph of large or ­

der which has an element of K as a subgraph contains a l so a 

large graph of K. I f F(K,n,k) i s the largest integer such that 

every k - c r i t i c a l graph of order n which has an element of K 
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as a subgraph, contains a subgraph of K of order s:F(K,n,k) 

then 

(1) lim F(K,n,k) =- * oo . 

Obviously, for k2 3 each k-critical graph contains a subgraph 

H'eC and a subgraph H"e 0. Thus each large k-critical graph 

contains a large circuit and also a large odd circuit. The 

first assertion was proved by J.B. Kelly and L.M. Kelly £10J 

in 1954, the second assertion gives an answer of case 9£ * 3 

of the question posed by J. NeSetfil and V. Rodl at the Inter­

national Colloquium on Finite and Infinite Sets held in 1973 

in Keszthely in Hungary(oral communication): 

Problem: Let ae,k,N be arbitrary positive integers with 

9e < k. Does there exist a positive integer n such that each 

k-critical graph G with at least n vertices contains a dt -cri­

tical subgraph G with at leaat N vertices? 

The order of the magnitude of F(C,n,k) was investigated 

by J.B. Kelly and L.M. Kelly C101, G.A. Dirac C32 and R.C. Read 

[12]. T. Gallai [81 has obtained a sharpening of these results 

by showing that for an infinite set of different positive in­

tegers n there exist k-critical graphs of order n of maximal 

circuit length -£ c^ log n, where c^ is an appropriate con­

stant. From Theorem 2b) it follows that F(C,n,k) and F(0,n,k) 

have the same magnitude. 

It also yields that the result "each large k-critical graph 

contains a large odd circuit" can be derived from the result 

of Kelly/Kelly "each large k-critical graph contains a large 

circuit" by means of Theorem 2b. 
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Before discussing other classes K we define: If r >3, 

then a topological complete r-graph consists of r branching 

vertices and of / ̂  J topological edges such that every two 

branching vertices are linked by exactly one topological ed­

ge. <r,U> denotes the class of all topological complete r-

graph • 

G.A. Dirac [11 has proved that each 4-critical graph con­

tains a < 4,U> . B. Zeidl 116 3 has shown that for k>4 each 

k-critical graph has a < 4,U> , containing a circuit of odd 

length. 

In [43 G.A. Dirac has proved that each circuit of a 4-criti­

cal graph is contained in a <4,U> . If we apply this result 

to the largest circuits and to the largest odd circuits, then 

we obtain from (l) with respect to K =- C and K = 0: For k>4 

each large k-critical graph has a large <4,U> and also a 

large < 4,U> containing a circuit of odd length, respective­

ly. 

In this paper I proved the first statement again (see 

(l)) but I cannot reprove the second statement with the aid 

of Theorem 3 because the class of all graphs t>f <4,U> cont­

aining an odd circuit has not property E* 

Because each k-critical graph has no vertex of valency .6 k - 2, 
4 , 

every k-critical graph of order n has > T Ik - 1) n edges. 

This lower bound was improved by T. Gallai L8Jand G.A. Dirac 
r 

t6j. For k>6 each k-critical graph contains at lest -~ n 

edges. A result of G.A. Dirac C53 says that each simple graph 

of order n> 5 with at least -£• n - 3 edgesk contains a graph 
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obtained from a graph of the class < 5»U> by delet ing one 

and only one topological edge. Because th i s graph has a spe­

c ia l prismgraph i t follows: For k > 6 each k - c r i t i c a l graph 

contains a prismgraph and with ( l ) each large k - c r i t i c a l 

grapfr contains a large prismgraph. 

K. Wagner tl4](H.A. Jung C9J) has proved: For every po­

s i t i ve integer r there ex is t s an integer k r (an integer k^ ) 

such that for a l l posit ive integers ks-rkp (k> k^ ) each k-

c r i t i c a l graph contains a < r , S > (a <r ,U> ) - also see W. 

NTader t i l l . By ( l ) from t h i s i t follows: For a l l k > k r each 

large k - c r i t i c a l graph contains a large < r ,S > • 

But by our methods i t cannot be shown that for a l l kt> kp 

each large k - c r i t i c a l graph contains a large < r , U > becau­

se <r ,U> has not property E. We do also not know whether 

t h i s asser t ion i s t rue . 

By def ini t ion we have 

%y 2Z(K,N,k)£Z(K,N). 

Because by Theorem 3c the number of nonisomorphic graphs of 

Z(K,N) is finite we have that there exists a positive inte­

ger k(K,N) such that Z(K,N,k) » 0 for all k2k(K,N). By m re­

sult of P. Erdos and H. Hajnal we can take k(0,N) -* N + 2 be­

cause they showed in 173 • Every graph which does not contain 

circuits of lengths 2j + 1 for all j> i is suitable colour­

able by 2i colours. 
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Sektion MARÖK 

TH ILmenau 

D D R ~ 63 

(Oblátům 1.11.1976) 
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