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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17, 3 (1976) 

FINITENESS CONDITIONS ON EDZ - VARIETIES 

Miroslav KOZlK, Praha 

Abstract: We shall study conditions for a given EDZ-
variety to be loc ally finite and to be generated by a fini­
te algebra. These two properties are algorithmically decid-
able. An EDZ-variety of a finite tvpe is generated by a fi­
nite algebra iff it is locally finite and finitely axioma-
tized. 
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The study of EDZ-varieties (varieties of universal al­

gebras with equationally definable zeros) provides us with 

various counterexamples, suitable in many respects. Moreo­

ver, EDZ-varieties are worth themselves of a special atten­

tion. Their investigation was begun in [1] and [2]. In the 

present paper we shall be concerned with the finiteness and 

generability by a finite algebra. We shall preserve the ter­

minology of [1] (with a slight modification regarding the 

length of a term). Some terminology and notations will be 

listed now. 

The set of variables is denoted by X -= Ax-j^,.-*} * 

If A is a type (i.e. a set of operation symbols), we deno­

te by W^ the algebra of A -terms. For every t£W A let 
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X(t)fX
f(t) denote the numbers defined as follows: if t is a 

variableAor a constant, then %(t) +%'{%) « 1; for t « F(tlf 

...,t ) put X(t) =- 1 +A,(t1)+...+A(tn ) and A'(t) **
r(tl)+ 

+...+ a'(tn ). In this paper A'(t) is called the length of t. 

The definition of an irreducible set of A-terms, of 

an EDZ-variety and related concepts, as well as their basic 

properties, are contained in til and repeated in L21. 

A variety K of universal algebras is called locally fi­

nite if every finitely generated algebra from K is finite. 

It is well-known (see e.g.QJ) that if a variety is generat­

ed by a finite algebra, then it is locally finite. The con­

verse is not true (a counterexample could be easily derived 

from results of this paper). 

Let J be an arbitrary non-empty set of A-terms. For e-

very positive integer n we define a A -algebra WjJ as follows: 

its underlying set is the set W - <|(J)u{0?, where W is 

the subalgebra of W generated by ix^t... tX^J; if P 6 A ̂  
tl ,###, tn.cl

€ \ "" $(J^ an<3 F(t1«»-*>t ) $ $(J), then we 

put Fw (t1f...,t ) « F(t-,,...,t„ ); in other cases we put 

FW ^tl»*'#»tn ' s 0# It is easy t0 see t3iat ib is the ZJ~ 
n F 

free algebra over^2^,...,x^. 

Let us define a set 1 ^ by t€ W ^ iff t contains no 

constants and whenever FvU^,...,^) is ax subterm of t, then 

at most one of the terms u1,...,un^ is not a variable; now 

for every t c l ^ we define a finite sequence C(t) as fol­

lows: if t is a variable, then pu% 6* (t) » <t > ; if t » 

« F(yi,...,y ), where y ^ . . . , ^ are wiablas, then put 
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ff(t) ss<y1,...,yn > I if t =* F ( y l f . . . f y j . . i i * f y j > i t . . . 

• ••tyri t̂ where u is not a variable and ^ (u) as<2
1|... 

F 

...fzm> , pat 6"(t) ss<z1f»t
2
m»3r1,..*tynF> • J t is ob­

vious that if e (t) ss<y1,...,yn> , then n * A/(t). 

For every j£W^ we define two subsets j' and j " of 

J as follows: te j' if te J, t contains no constants and no 

variable has more than one occurence in tj J* - J'o 1^" . 

For every A -term t let o(t) denote the positive inte­

ger defined in this way: if t is a variable or a constant, 

then o(t) * 1; if t = F(t1,...,t ), then o(t) - max-fo(t1), 

...,o(t„H + 1. 
^F 

Proposition 1. Let J be an irreducible set of A-terms. 

The variety Zj is locally finite iff Vfi is finite and for eve­

ry positive integer n there exists a positive integer It: such 

that -€t€Wn,- Pi'lt)*}^} s $ (J) and 

4 F e A ; nF = n, P(x1,...,xn )<| $ (J)} is finite. 

Proof is easy. 

Proposition 2. Let J be an irreducible set of A-terms. 

The variety Zj is generated by a finite algebra iff it is lo­

cally finite and there exists a positive integer m such that 

-ite W^ ; &'(t)2m $ £ $ (J). 

Proof. Let Zj be generated by a finite algebra. It is 

easy to see that Zj is locally finite and that Zj is generat­

ed by IT for some positive integer n. Since T^ is finite, the­

re exists a positive integer m such that iteW n; 31/(t)2 m j s 

£ $ (J). 

Let t be an arbitrary A -term of length 2i m; it is 
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enough to prove t e $ (J). There exists a term of length 

*> m such that t4*v. It cp is an arbitrary homomorphism of 

WA into IT, then evidently <f (t) = <p (v) s 0. Hence the 

identity <t,v> is satisfied in TUT.; since W^ generate J, 

it is satisfied in Z- and thus t e <fe (J). 

Conversely, let Z j be locally finite and every term of 

length > m belong to §(J)# The algebra W j ^ is finite and 

it is enough to show that Zj is generated by W^_-,. This will 

be proved if we derive a contradiction from the following as­

sumption: there exist A -terms u, v such that u4-.v, the iden­

tity <u,v> is satisfied in W^-t and u e> $ CJ)» 

Denote by y^t...-y^. the variables contained in u. Since 

u # § (J), we have k< m. There exists an automorphism oc of 

W4 such that 4 ooCy^) , . . . . , t* (y^)J S -£ ̂ -•••tx
m#_2S »

 so 

that cc(tt)ewr.» Evidently oc (u) 4- oc (v) and the identity 

< oO Cu), oc(v) > is satisfied in **!».;*• I«et ?̂ be the homo­

morphism of WA onto W ^ ^ defined as follows: yCx-^) * xlf... 

•••t*^!* •Vl».?(V" ̂ (xm+l) = ••• = °* **W««ar 

9>(t) = t for all t ^ ^ - 4 0 3 and y(t) « 0 for all other 

t. 

Since < P 6 ( U ) , OC(V)> is satisfied in Wj^-,, <3p(ccCu)) = 

= <y(c6(v)), i.e. oc(u) * ̂ (ocCv)). This implies <f (06 (v))4* 

4-0 and thus <$>(oc(v)) * P £ ( V ) . We get 00 (u) = oc(v) and 

consequently u - v, a contradiction. 

Pro-position 3. Let J be an irreducible set of A -terms -

Then for every integer n2:l the following conditions are equi­

valent: 

i) Zj is locally finite and -ttcW^'f »7L'(t)£n } s $ (J)i 
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ii) Zj, is locally finite and -Ite Ifî  iX'(%)>n j.£ $ (J')J 

iii) the algebra W? is finite and ^(t}< n for all terms 

t€wf-40}. 
Proof,. i)=£ii). Let t€W A and X'(%)> n. Evidently 

there exists a term seW^ such that s^t and X'(s) ~A,'(%)} 

since A'isJin, we have s 6 $ (J) by i) and so cp (w) is a 

subterm of.s for SODB W £ J and some endomorphism cp of W A • 

Clearly we J* and thus t c $ (J#). We have proved -tteW^ .; 

.V(t)2:n } s $ (J#). The rest is easy by Proposition 1. 

ii)=>iii) is obvious. 

i i i ) = = > i ) . Let cp be the endomorphism of f^ defined 

by eg (x i ) = x^ for a l l i = 1 , 2 , . . . . 

Let teWA and ^ ( t ) > n . We have y t t l e f j and 

X'{cp(%)) ~X'(%). There exist an endomorphism y o f l ^ and 

a term u e J ' such that if (u) i s a subterm of cp(t) . Put 

var u *-Cyif«»»f3V(u)? • From the definition of <p i t i s ea­

sy to see that there exist subterms t-, »»-»i*a'(u) of t such 

that $>(%) * T(y^) and such that Tjr'(u) i s a subterm of t , 

i f Y' is an endomorphism of WA such that Y' (y i ) = t^. Hen-

c e t e $ (J*) s # ( J ) . 

Similarly i f F C x ^ , . . . ^ ) 4 § ( J ) i t11611 y ( F ( x l f . . . 

. . . jX^JJcwf . The local f initeness of Zj follows now from 

Proposition 1. 

Oorollary. Let J be an irreducible set of A -terms and 

le t the variety Zj be locally f in i te - Then Zj i s generated by 

a f in i te algebra i f f Zj, is local ly f in i te• 

Proof. Follows from Propositions 2 and 3 . 

Proposition 4. Let J be a f in i te irreducible set of 
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A-terms. Suppose that the variety Zj is non-trivial and lo­

cally finite. Then A is finite and. Zj is generated by a 

finite algebra. 

Proof. If A were infinite, then there woulU exist m 

symbol F c A (n«4-0) such that no term from J contains m 

subterm of the form P(u-,,...,un ). Consequently e»g. the al-

gebra W ? w o u M contain infinitely many terms ^I'^'l^-*** , 

where t^ - Ftx-,,...,*^ )f«*»ftn^2
 s E(tnf***ftn)f a contra-

F 

diction. 

Put k s 2 + max *fn«; F 6 A } and for every positive in­

teger n put Sn =-tt6 W^| o(t ) - n f • 

Suppose f irs t that for every positive integer n there 

exists a term t n € Sn - $ ( J ' # ) . Put T - - t t - ^ t g , . . * I and s -* 

* max -iX'(t); t € J? . Since Zj i s locally f i n i t e , there ex­

i s t s an r such that 4teWa; A/(t)2rr J S § (J) . 

Let us define a se t TQ of A -terms by t a tm i f f tike f o l ­

lowing two conditions are sat is f ied; 

a) t€W8n Ŵ  , 

b) i f 6*(t) - < y 1 , . . . , y p > and y± * y^ for i , j e * l f . . . , p f , 

then i s :j(mod s ) . 

Let us prove that i f t e $ s and & ' ( t ) > r f then t a 

€ $ ( j " ) . We have evidently t e $ (J) , so that there exist 

a term uc J and an endomorphism ijr of Ŵ  such that ijr(u) 

is a subterm of t . I t i s not di f f icult to prove (using t e Tfl) 

that uc J*. Ifow uc J#* i s easy and so t € § ( J ' # ) . 

There exist a number n.>r and a term t € 3L such that 
* B 

$(t) = <x1>...,a^1> for some automorphism ©c of I A . Let 

us define an endomorphism <p of W A in this way: 
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9(xi* = xj» where j €4l , . . . , s*J and i == o(mod s ) . 

Evidently <y(cc(t))6Ts and X' (<j? (oc (t))) s n, so that 

cp (oc(t)) c $ ( J " ) . Similarly as in the proof of Proposi­

tion 3 ( i i i ) = > i ) ) i t can be proved that t^(t) . e $ ( J " ) 

and consequently t e § ( j " ) , a contradiction with the assum­

ption t £ § ( J " ) . Denote by n the smallest number such that 
s

n ~ <§ ( J " ) . % Proposition 2 i t is enough to show that 

if t e Ŵ  and A/(t)s k11"1, then t 6 $ ( J " ) s $ (J) . 

Evidently n£2, since Zj is non-trivial; we shall define 

sets Pn,...,P„ T as follows: 
1 1 

we have t = F.CuJ, . . .^1 ) . If n * 2, put P-j. »*u l f . . .f«u T • 

If n > 3 , then there exists a number ̂  «-£l, ...,np ]• such 

that X'iv^z*?1-2; putP1«4uJ,...,uJrl#tt5i+lf...fuJf > # 

Again we have Uj = ̂ (u^,.. •>u
n ). If n = 3, put -^ ~ Pl u 

o -Cu?,...,u2 } . If n24, then there exists a number J 2 6 
ttp2 

€ -il,...,nF } such that X Cm* )*kn~3; put *2
 = F l u < ui»*^ 

2 -» 

...,u| ̂ lfu? + 1i-*t^? ? } . If we have defined PlfP2,,... 

..-,Pn.2, P ^ Pn.x - Pn!2 u 4 u f
 1»..*,un-1 > and let us de­

fine terms t^"1*,.. .,t(1) in this way. 

t(n-l) = Pn_l(Xl,...tXn ), t(n"2)= F n_ 2( y i y, 
Fn-1 n~2 

* ~ >7\ f"$y*n -i)f w h e r e yi>.-**,y^ i are pairwise 

°n-2 ^n-2 "V* 
different variables not occuring in t^*1-*1^ 
tK = F1(z1,...,zj lf t ,z. ,...,2 - 1 ) f where alf... 

Fl 
•••»z»™ -1 are P a i r w i s e different varlaDxes not occuring in 

Fl 
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t ( 2 ) . Evidmtly t ( i ) € Sn and t € $ U t ( 1 ) } ) £ $ ( j " ) . 

Proposition 5. Let J be an irreducible s e t of terms of 

a. f in i t e type A and l e t Z* be generated by a f i n i t e algeb­

r a . Then J i s f i n i t e . 

Proof. Put k = max An^j F € A § and l e t n be the 

smallest positive integer such that 4 t £ W ^ j ^ ' t t j ^ n j .& 

£ § ( J ) . Let us denote by T the se t of A -terms t c W ^ ^ r . 

n § (J) such that A'( t)--rn + k. Obviously T i s f i n i t e , so 

that there exis ts a f i n i t e irreducible subset S£T such t h a t 

$ (S ) m $ (T), 

Let us prove by induction on A ( t ) tha t t € § (J) imp­

l ies t 6 $ (T). If t 6 $ (J) and A / ( t ) . ^ n + k, then t h e r e i s 

an automorphism cc of Ŵ  with cC (t) e ^+^5 "we have c c ( t ) € 

€Wn+k A § ( J ) , i . e . o c ( t ) e T f so tha t t € $ ( T ) . 

Let A ' ( t ) > n + k and t € |> ( J ) . There e x i s t a. symbol G 

and terms y-,,. • . ,yn such that G (y-,, • . . ,y ) i s a subterm 

of t and every y* i s e i ther a variable or a constant . Let z 

be a variable not contained in t . I f we replace p r e c i s e l y 

one occurence of G(y 1 > . . . f y ) in t by z, we obtain a new 

term s . Evidently A(s) < A*(t.) and A ' ( s ) 2 A ' ( t ) - k + 

+ l > n , so that s € $ ( J ) . % the induction assumption a c 

€ $ (T). However s -6 t , so that t e <§ (T), t o o . 

We have proved $ (J) '£ $ CT). Since $ ( T ) s $ (J ) i s 

obvious, we get $ (J) - £> (T) » $ ( S ) . Since eyery two i r ­

reducible generating subsets of $ (J) have the same c a r d i ­

na l i t y , J has the same cardinal i ty as S and consequently J 

i s f i n i t e . 

Theorem 1. Let J be an irreducible set of terms at a. 
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finite type A • Then the variety Zj is generated by a fi­

nite algebra iff" -Sj is locally finite and J is finite. 

Proof. Follows from Propositions 4 and 5. 

For every positive integer p and for every J s W ^ we 

define S * -tt€w*A ; o(t) = p |, 

U p « 4te W A j o(t) * Pj ^(t) *<'3c1,...,xJl/(t)> , 

Jp * U p n * W">* 

Proposition 6. Let J be a f in i t e irreducible set of 

terms of a f i n i t e type A and let the variety Zj be local­

ly f in i t e . If k = max A n^; F e A J + 2 , p = max -f o(t) | t € 

e J * # } , r - card TJ , q = card J , then 4.t6irA ; ASM £ 
^p+r-tq+l ) j fi $ ( j " ) # 

Proof. For every t € S we shall construct a term u e 

e $ ( J " ) as follows. 

If t e § ( J " ) , put u = t . I f t £ $ ( J " ) , then for an 

arbitrary symbol G e A such that n^^ 0 we define t , s 

* G ( u 1 , . . . , u i r > , where 4 u 1 , . . . , u n ^ } * - f y 1 , . . . , y 1 , t l and 

y - , , . . . , y -̂j are arbitrary variables. 

There ex i s t a symbol F e A and variabiles z1 , .#»,-W 

such that F(z , , • • • , z ) i s a subterm of t 1 # Let us replace 

this subterm by x-, and a l l other occurences of variable s in 

t-. which are not contained in this subterm by Xp,x^,..# , *o 

that the new term t-[ i s such that S (t^) ^^x- , , . . • ,%/(-£' )> • 

Obviously t-[e U ; since t fa $ ( J " ) , we have t-^e $ ( j " ) i f f 

t , € J . 
1 P If t x e § ( J " ) , put u - ^ . I f t j t J ( J " ) , then for 
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an arbitrary symbol H є A such that Пң+O we definз t^ = 

= H ( v l t . . . , • - ) , WҺЄГЄ ÍГliФ..ўГ } s-ÎWj.* • -•. »w|v . i f ^ i î a n â 

w-,, . . . |V - i ä**0 aгbitrary variable s . 

Theгe eзcists a symbol Б є Л such t ћ a t . Б ( . . # , F ( г 1 , . . . 

. . . , 2 ) , . . . ) i s a subterm of t ^ . Let us repЗace t h i s sub-
F 

term by x-j and a l l other occurences of variables in t ^ which 

are not containeđ in t h i s subterm by .x^x-ţt*** , so that the 

new term tZ is such that ^ ( t ó ) Ä ^ x т t *• *> xa /(t / ) ^ * 

Again t g e ü ^ and t 2 є ф ( j " ) i f f t 2 ' e j p . I ř t 2 e $ ( J " ) , 

put u ss t ^ . If t^ Ф $ ( J " ) , we can define analogously terms 

^З* 3'*** * 
Put ? = Ч t l f t 2 , . . . } . We s h a l l show t h a t t^-ф-tj, i f i ф j . 

In the contrary case l e t < i , j > be pair the f i r a t SUCÎŁ t h a ţ 

i < j and t ľ * i ^ . We can def ine tвrms Uj+ 1,u.j+2t •• * s u c î î ^*18^ 

for every positive integer m o(u.ï+m) = p + j + m and t +jд * 

= t ^ , wћere i ^ n < : j i f f m з n(mod j - i ) . I f t ^ ^ « 

* ғ ( У l f . . . , % , > . . , y ^ ) , then we put U j + 1 =- F ( y l f . . . , t j , . . . 

...5yҷ _д) snd i f * + i s already đefined, m s n(mod j - i ) 

for some n (iían-cj) and i f t n + 1 - G ( z l f . . . , t n , . . . ,12̂  в l ) , 

then we put u j + щ + 1 « íK« l f . . . f u ^ f . . . , * ^ _ 1 ) . . Thus u j + m Џ 

* Ф ( j " ) for a l l m, & contradiction with Proposit ion 4 . 

Iheref ore card V-é r - q and we put u » t f where n i s 

the smallвst шteger such that t n e $ ( J " ) . Hence i t i s ea-

sy to see that î y ^ * Jpьт-ą ^ V ^ S * < * " > • *% **• 

proof of Proposition 4 4tєWд ; ЛГІtУz ъpњ-íą+1) $ s 

є # ( J " ) . . 
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Theorem 2. Let J be a finite irreducible set of terms 

of a finite type A . Let s = max 4&'(t); t«£j$ , k -

= max -in-pi F e A J + 2 t p = ifiax-{ o(t); t e j " j , r = card U , 

q = card J . Then the following conditions are equivalent. 

1) Zj is locally finite. 

2) Zj, is locally finite. 

3) Zj// is locally finite. 

4) The algebra W^ is finite. 

5) The algebra wf is finite. 

6) There exists an n.£ fcP+->-(<.i+--) s u c h t n a t 

4te WA ; ̂ '(t)>nl s $ (J"). 

7) Zj is generated by a finite algebra. 

Proof. 1) -===-> 6) ==.-> 7) ==-»!). Apply Propositions 6 and 

2. 

3)4==->4). Follows from Proposition 3. 

3)^>2)«->l)« Trivial* 

l)-=-=.=»3). By Proposition 4 there exists an positive in­

teger m such that S m£ § (J"). Hence «£t€WA ; A'ltlsk
111'"1^ 

£ $ (J") and consequently Z-„ is locally finite. 

1 )<=> 5). Follows from the proof of Proposition 4. 

Remark 1. • For every finite irreducible set J of terms 

of a finite type A we have an algorithm to decide whether 

the variety Zj is locally finite. By Proposition 6 it suffi­

ces to decide whether U-J+JW. = n̂+r-.Q>
 wn©re P = max-[o(t)j 

te J#'j, r = card U and q = card J . This process is obvi­

ous from the proof of this Propositi on* 

Remark 2. We know that under the assumptions of Theo­

rem 2 the *f initenesa of r implies the local finiteness of 
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2j. If we put h = max {card (var t); te J? , then it is not 

true in general that the finiteness of ̂  implies the local 

finiteness of Zj» 

For example, let A = 4 F I , where F is a binary opera­

tion symbol and let o denote the corresponding operation on 

W^ . Let L denote the set of all terms t e WA of the form 

t * (x4 o x. ) o (x- o x- ) or t - (x4 o xs ) Q x* or 
H x2 x3 ^ 4 xl ^"2 ^3 

t = x^ o (x* o Xz ) , where i - , ^ , ^ , ^ ^ € 1 , 2 } . Then there 

exists an irreducible subset JSL such that $ ( J ) s $ CD; 

we have h = 2. It i s not diff icult to prove (by induction on 

a ' ( t ) ) that -CtcW^ &'<t)2:4} £ § (J) and consequently * | 

i s f i n i t e . However by Theorem 2 the variety Zj i s not locally 

f in i t e , since J ' a J " s 13, 
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