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FINITENESS CONDITIONS ON EDZ - VARIETIES

Miroslav K0Z£K, Praha

Abstract: We shall study conditions for a given EIZ-
variety to be locally finite and to be generated by a fini-
te algebra, These two properties are algorithmically decid-
able. An EDZ-variety of a finite type is generated by a fi-
nite algebra iff it is locally finite and finitely axioma-
tized,
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The study of EDZ-varieties (varieties of universal al-
gebras with equationally definable zeros) provides us with
various counterexamples, suitable in many respects. Moreo-
ver, EDZ-varieties are worth themselves of a special atten-
tion. Their investigation was begun in [1] and [2]. In the
present paper we shall be concerned with the finiteness and
genere;bility by a finite algebra. We shall preserve the ter-
minmology of [1] (with a slight modification regarding the
length of a term). Some terminology and notations will be
listed now.

The set of varisbles is denoted by X = -ixl,xz,.o-f .

If A is & type (i.e. a set of operation symbols), we deno-
te by W, the algebra of A -terms. For every teW, let
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A (t),A°(t) denote the numbers defined as follows: if t is a
variable,or a constant, then A(t) ®A°(t) = 1; for t = F(tq,
seesty ) put A1) =1 A4k AL, ) end 27(1) =(t))+
+ouot a’(tnF). In this paper A(t) is called the length of t.

The definition of an irreducible set of A -terms, of
an EDZ-variety and related concepts, as well as their basic
properties, are contained in [1] and repeated in L21].

A variety K of universal algebras is called locally fi-

nite if every finitely generated algebra from K is finite.
It is well-known (see e.g.[3]) that if a variety is generat-
ed by & finite algebra, then it is locally finite., The con-
verse is not true (a counterexample could be easily derived
from results of this paper).

Let J be an arbitrary non-empty set of A -terms. For e~
very positive integer n we define a A-algebi'a #‘; as follows:
its underlying set is the set W, - $(J)u {03, where W, is
the subalgebra of W generated by ix),...,X,}; if Fe 4 ,
tl,...,tnFe W, - §(»J) and F(tl,...,tnr) ¢ $(J), then we
put Fwn(tl’“"tn?) = F(tl,....,tn?); in other cases we put
Fwn(tl,...,tnF) = 0. It is easy to see that Vi is the Z,~
free algebra over{xl,...,xhi.

Let us define a set W, by teW, iff t contains no

constants and whenever F(“l'“"unf) is a subterm of t, then
at most one of the terms Uy,...,%y. is not a variable; now

for every te W, we define a finite sequence &' (t) as fol-
lows: if t is @ variable, them put 6 (t) =(t); if t =

= F(yl,...,y ), where yl""'ynF are variables, then put

op
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G (t) =<y1,..-,ynF> H it t = F(yl,...,YJ_ltu,¥j+1o...
vees¥y ), Where u is not a variable end & (u) =<z,,,.,
ceesZyd , put 6(t) =<zl,...,zm,y1,...,yn?> o It is ob-

viow that if 6 (t) =<yy,...,y, >, then n = A%(1),
For every JEW, we define two subsets J and J°° of
J as follows: te J° if te J, t contains no constants and no
variable has more than one occurence in t; J°’ = J AW, .
For every A& -term t let o(t) denote the positive inte-
ger defined in this way: if t is a variable or a constant,

then o(t) = 1; if t = F(tl,...,tnp), then o(t) = max{o(t,),

...,o(tnF)} + 1.

Proposition 1, ILet J be an irreducible set of A-~terms.
The varief;y ZJ is locally finite iff W‘{ ig finite amnd for eve-
ry positive integer n there exists a positive integer k, such
that {teW ; A'(t)zk ¥ = & (J) and
{Fe A ; np=n, F(xl,...,xnr) ¢ § (J)? is finite.

Proof is easy.

Proposition 2. ILet J be an irreducible set of A -terms.
The variety 2 J is generated by a finite algebra iff it 18 lo-
cally finite and there exists a positive integer m such that
fteW, ; AM't)zn 3 e & ().

Proof. Iet Z; be generated by a finite algebra. It is
easy to see that ZJ is locally finite and that ZJ is generat-
ed by Wg for some positive integer n. Since ’ﬂg is finite, the-
re exists a positive integer m such that {teW,; A'(t)xzmic

s & ).
Let t be an arbitrary A -term of length = m; it is
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enough to prove t € $ (J). There exists a term of length

2 m such that t+v. If ¢¢ is an erbitrary homomorphism of
W, into Wg, then evidently < (t) = ¢ (v) = O, Hence the
identity {t,v> is satisfied in W’i; since Wg generate J,
it is satisfied in Zy and thus t & (7).

Conversely, let Z; be locally finite and every term of
length = m belong to $(J). The algebra w;{_l is finite and
it is enough to show that ZJ is generated by Wi_l. This will
be proved if we derive a contradiction from the following as-
sumption: there exist A -terms u, v such that usv, the iden-
tity <{u,v) is satisfied in Wi__l and u & & (J).

Denote by ¥yj,...,¥y the variables contained in u. Since
u ¢ & (J), we have k< m. There exists an automorphism o of
Wy such that {oc(yy)yeee, x ()3 S 4 5500055, 13, 80
that o (u)e ';1{-1’ Evidently oc(u) #= o (v) and the identity
(e (u),c(v) > is satisfied in "i_l. Let ¢ be the homo-
morphism of W, onto 'i-l defined as follows: P(x;) = xy,...
ooy @(xp 1) = x4, Plxy) = ¥(x,,) = ... = 0. Evidently

@ (t) = t for all te 'g-l -40% anmd @(t) = 0 for all other
t.

Since <ec(u), c(v)> is satisfied in W_,, @(eclu)) =
= @(cc(v)), ice. ef(u) = ¢(xc(v)), This implies <y(oc(v))¢
%0 and thus ¢ (c¢(v)) = oc(v). We get oc (u) = cc(v) and
consequently u = v, a contradiction.

Proposition 3. Let J be an irreducible set of A -terms.
Then for every integer n=1 the following conditioﬁs are eqﬁi-—
valent:

i) Zj is locally finite and {teW, ; A (t)Zn 3 & (J);
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ii) 2Zj is locally finite and {te Wy iV t)zn3s W)
iii) +the algebra W‘{' is finite and A’(t)<n for all terms
te w‘{’- {0%.

Proofi. i) =2 ii). Let teW, and 27(t)=n, Evidently
there exists a term se Wi such that s<t and A7(s) =A(t);
since A’(s)2n, we have s € ® (J) by i) and so (w) is a
subterm of s for some we&dJ and some endomorphism ¢ of Wp o
Clearly weJ° and thus t € $ (J°). We have proved {te W, ;
A’(t)zn} = & (J7). The rest is easy by Proposition 1.

1i) =) iii) is obvious.

iii)=>i). Let ¢ be the endomorphism of W, defined
by @ (x;) =xy for all i = 1,2,... .

let teW, and A/(t)zn. We have @(t)e W, and
A’(g(t)) =A7(t). There exist an endomorphism ¥ of W, and
a term ue J° such that ¥ (u) is a subterm of ¢ (t). Put
var u ={yl,...,yx(u)2 . From the definition of ¢ it is ea-
8y to see that there exist subterms tyseeaityy) of t such
that @ (t;) = ¥(y;) and such that 3 “(u) is a subterm of t,
if ¥’ is anendomorphism of W, such that ¥’(y;) = t;j. Hen-
ceied () e & ).

Similarly if F(xl""’ﬁr) ¢ $(J), then @ (F(xy,...
...,xDF))’eI‘{I. The local finiteness of Z; follows now from

Proposition 1.

Corollary., Let J be an irreducible set of A —-terms and
let the variety 2 J be locally finite. Then Z; is generated by
a finite algera iff ZJ,:is locally finite.

Proof. Follows from Propositions 2 end 3.

. Proposition 4. Let J be a finite irreducible set of
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A-terms. Suppese that the variety 2 J is non-trivial and lo-
cally finite. Then A is finite and 2y is generated ty a
finite algebra. ’

Proof. If A were infinite, then there would exist a
symbol F € A (np#0) such that no term from J contains &

subterm of the form F(ul,...,unr). Consequently e.g. the al-
gebra wgr would contain infinitely many terms tl,tz,ta,... ’
where t; = F(xl"”’%zp)"“'tn*ﬁl = F(tn,...,tn), a contra-

diction.

Put k = 2 + max {np; Fe A3 and for every positive in-
teger nput S, ={teV¥,’; o(t) =n}.

Suppose first that for every positive integer n there
exists a term t €S, = $(J°°). Put T ={t,,ty,...} and s =
= max {2°(t); ted% . Since Z; is locally finite, there ex-
ists an r such that fteW,; A(t)zr ¢ ® 7).

Let us Gefime a set T, of A -terms by te T iff the fol~-
lowing two conditions are satisfied:

a) teW NV, ,
b) if €(t) =<:1,.,..,yp> and y; =y; for i,je 4£1,...,p%,
then i= j(mod 8).

Let us prove that if teT, and A’(t)=r, then t e
€ & (J°°). We have evidently t € & (J), so that there exist
a term ueJ and an endomorphism Y of W, such that yr(u)
is a subterm of t. It is not difficult to prove (using te Ta)
that ueJ’. Now ue J°’ is easy and so t € & (J°°).

There exist a number nZr and a term te T, such that
6(t) = <xl,...,xn> for some automorphism o of W, . let

us define an endomorphism @ of Wo in this way: !
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@ (x;) = X35 where j € {1,...,8% and i= j(mod s).
Evidently ¢ (< (t))e Ty and A7 (@ (ec(t))) = n, so that

@ (c(t)) 6.8 (3°%). Similarly as in the proof of Proposi-
tion 3 (ifii) == i)) it cen be proved thet oc(t) € & (J°’
and consequently t € ® (J°’), a contradiction with the assum-
ption t € $ (J'’), Denote by n the smallest number such that

Sp € & (I°). By Proposition 2 it is enough to show that
if teW, and A’(t)z XK"Y, then te d (I7) = § (9D,

Evidently n=2, since 2 J is non-trivial; we shall define

sets Pq,ee.,Pp 1 as follows:

we have t = Fl(ul,...,un ). If n =2, put Py '{ul""’% } .
1
If n =3, then there exists a number j, s-il,...,nFl} such

- 1 1 1
that Af (u%l)zkn 2; put Py =-{ui,...,ujl_l,ujfl,...,th 1.
1

. 1 2 2 - -
Again we have u: = F,(us,... o If n =3, put P, =P, v

271 4 2 1
i unF2

v {ui"._’uip } . If n24, then there exists a number j, €

2 - -
€ {1,...,np } such that A’(w% )z K" 3; put P, = Py u -iui,---
“"uz -l’ui *1""’u“z\ . If we have defined Pl, Dy eee

""Pn-Z’ p#t Pn 1 = P -2 U'{ul 10-0’,unF1 } and let us de~
; (n-1) (1) 5. tni -1
fine terms t' yeoost in this way:

- (n-2
¢(n-1) _ Fn-l(xl""”%l... y, ¢ Je

n-1
33 ,...,y ), where ¥q,...,¥
In- -1 1 ’
Tz "oz
different variables not occuring in t(n‘l),

1) . 2
t = Fl(zl’...’zjl*l’ t( >,Zjl,-¢o,z

n-2 (yl, ve e ,yjn-z_l,

t(n“‘l) . .
-1 are pailirwlse

-1)» vwhere z,,...

l ‘

...,an -1 &re pairwise different varisples not occuring in
1

Dy
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22, Evidently e S,and t & & (£t Py e 3w,

Propogsition 5. Iet J be an irreducible set of terms of
a finite type A and let Z; be generated by a finite algeb-
ra. Then J is finite.

Proof. Put k = max4{np; P€ A} and let n be the
smallest positive integer such that {teW, ; A’ (t)zn3 <
& & (J). let us denote by T the set of A -terms te Vo N
N ® (J) such that A’(t)£n + k., Obviously T is finite, so
that there exists a finite irreducible subset SE&T such that
p(s) = d (M,

Let us prove by induction on A(t) that te $ (J) imp-
lies t € $ (T). If t € § (J) and A’(t)£n + k, then there is
an automorphism oc of W, with oc(t)e Wy, ; we have oc(t)e
eV nd W), ie. (t)eT, so that t € $ (T).

Let A’(t)>n+kand t € & (J). There exist a symbol G
and terms yl,...,ynG

of t and every ¥i is either a variable or a constant. Let z

such that G (yl,...,ynG) is a subterm

be a variable not contained in t. If we replace precisely
one occurence of G(¥;,+.+,¥, ) in t by z, we obtain a new
term s. Evidently A(8s) < A(t) and A'(8) = A'(t) - k +
+ 1>n, so that s € § (J). By the induction assumptionm 8 €
€ § (T). However s<t, so that t € & (T), too.

We have proved @ (J) & H(T). Since B (T) = P (J) is
obvious, we get & (J) = $(T) = $ (S). Since every two ir-
reducible generating subsets of & (J) have the same cardi-
nality, J has the same cardinality as S and consequently J
is finite.

Theorem 1., Let J be an irreducible set of terms of a
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finite type A . Then the wariety 2 g is generated by‘ a fi-
nite algebra iff Z; is locally finite and J is finite,
Proof. Follows from Propositions 4 and 5.

For every positive integer p and for every JSWA we
define Sp = {teW, ; o(t) =p},
Up =4{teW, ; o(t) = p, 6(t) =<xl,...,xx(t)> ,

Jp =Upn d W@ M.

Proposition 6, Let J be a finite irreducible set of
terms of a finite type A and let the variety Z; be local-
1y finite, If k = max{np; Fe A} + 2, p=max{fo(t); te
€J’’}, r=card U_, q = card J,» then {te W, ; A°(t) =
2P T-lal) 3 g g (g0,

Proof, For every te Sp we shall construct & term u €
e $ (3’°’) as follows.

IPtedP(0’),putu=t. It ¢ & (J°°), then for an
arbitrary symbol G € A such that ny+ 0 we defire t, =

= G(ul,...,unc), where {ul,...,ung} =i’yl,...,ynG_l,t} and
’1""’ynG-l are arbitrary variatles.
There exist a symbol Fe A and variables zl,...,znr

such that F(z,,...,2, ) is a subterm of t,. Let us replace

oy

this subterm by x, and all other occurences of variables in
ty which are not contained in this subterm by Xp3X34ece 9 8o

that the new term t; is such that & (t;) =<xl,...,x1,(t,1)> .

Obviously ti€ U_; since t (J°°), we have t. € & (J77) iff
1 p? ’ 1

4
tle Jp.
Iftye $(I°), put u=t,. If t; & & (J°7), then for
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an arbitrary symbol H € A such that n;+0 we define t, =

= H(vl,...,vnH), where {vy,..., n’H} =-iwl,...,wnH_1,tl} and
Wysees,W, _y 8TE arbitrary variables.

g
There exists a symbol E € A such that E(...,F(z,...

eeeyZy )ye.0) is a subterm of t,. Let us replace this sub-

n
F
term by X and all other occurences of variables in t, which
are not contained in this subterm by X53X3yeee , 80 that the

new term tj is such that 6&(t;) = <xl""’x./'l’(t’2)> .
Again tje U, and ty e & (J°7) iff tyed . If t, 6 & (97,
put u = t,, If t, € & (J°°), we can define analogously terms

t3ot3seee o
Put V = 4t,,t5,... §. We shall show that t{#t;j, if i j.
In the contrary case let {(i,j» be pair the first such that

i< and t{ = t3. We can define terms Ujp13%540 00+ SUCh that
for every positive integzer m o(uj_,,m) =p+ j+mand u

I
s

J+m

=

=t, , where itn<j iff m= n(mod j - i). If tie =

F(yl,...,ti,...,ynF_l), then we put “j+l = F(yl,ﬂno'tj’ctu

""ynF-l) and if Ui is already defined, m = n(mod j - i)

for some n (i4n<j) and if ¢, = G(Zyse0eytpyece,z

ng-17?

then we put u = G(2,e00,u 1)+ Thus u

J"Hn’"l = j_'_m,oo-,znG_ j""m #
€ & (0°%) for all m, & contradiction with Proposition 4.
?

Therefore card V£r - q and we put u = t,» where n is

the smallest integer such that t, & & (J ‘’). Hence it is ea-
1 = s o0 .

sy to see that Upﬂ‘—q Jp+r—q and ptreq & <I>((i )) By the
proof of Proposition 4 {teW, ; A(t)zkPT-{a*l)3 o

e (.
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Theorem 2, ILet J be a finite irreducible set of terms
of a finite type A . Let s = max 4A°(t); ted}, k= ‘
= mex €np; Fe A} + 2, p = dax{o(t); te J°°%, r = card Up,
q = card Jp. Then the following conditions are equivalent.,

1) Z; is locally finite.

2) ZJ. is locally finite,

3) Zg is locally finite.

4) The algebra W‘{” is finite.

5) The algebra Wg is finite.

6) There exists an n< kP*T=(a*1) 0y that

ftew, ; A(t)zn3 s "),
) ZJ is generated by a finite algebra.
Proof., 1) ==>6) =)7) =»1). Apply Propositions 6 and

3)&>4). Follows from Proposition 3.

3)==>2) ==>1). Trivial.

1) =3). By Proposition 4 there exists an positive in-
teger m such that S & & (J°°). Hence 4teW, ; A'(t)2 km_lis
& $(J°°) and consequently Z., is locally finite.

1)=>5). Follows from the proof of Proposition 4.

Remark 1.  For every finite irreducible sei J of terms
of a finite type A we have an algorithm to decide whéther
the variety ZJ is locally finite. By Proposition 6 it suffi-
ces to decide whether Up+r-q = J"p+r-q’ vhere p = max {o(t);
teJd’’3, r = card U, and q = card J. This process is obvi-
ous from the’ proof of this Proposition.

Remark 2. We know. that under the assumptiocns of Theo-

rem 2 the finiteness of Vg implies the local finiteness of
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Zye If we put h = max {card (var t); t€J%, then it is not
true in general that the finiteness of wg implies the local
finiteness of Zj. :

For example, let A ={F3} , where F is a binary opera-
tion symbol and let o denote the corresponding operation on

Wy o Let L denote the set of all terms te W, of the form

t = (xilo xia) o (xi30 xi4) ort= (xilb xiz)a ’i3 or

t = xilo (xigo 113), where 11!12,13,i4 € 41,23 . Then there
exists an irreducible subset J€L such that & (J) = @ (L);
we have h = 2, It is not difficult to prove (by induction on
(1)) that {teW,; A(t)=43 c § (J) and consequently Vg
is finite. However by Theorem 2 the variety Z; is not locally

finite, since J° = J°° = g.
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