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NOTE ON HOMOMORPHISM INTERPOLATION THEOREM

Marek BOGUSZAK, Svatopluk POLJAK, Jirf TOMA, Praha

Abstract: & homomorphism interpolation theorem for stci-
eties and cohomomorphisms is proved. This extends similar
theorems for graphs and complete partitions.
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This note contains a method by means of which one can
prove homomorphism interpolation theorems (of the type dis-
cussed in [1 - 3])). Particularly, we give a short proof of
[2]. Our method is directly applicable to infinite objects,
too. Moreover, we prove that with two exceptions there are al-
ways at least two different complete partitions. Let us re-~
mark that the proof is g suitable category-theory modifica-
tion of‘(].].

Iet ¥ be the category whose ob,ject;s are sets with a
hereditary family of subsets (S = (X, %> , NsMs 7 =
==N 6 %L ) and morphisms are cohomomorphisms (f: <X,#%t>—>
—> <Y, %> 1is a morphism 1ff N 6 7L ==y £ 1(N) & 721 ) .
An object of category & is called a society, the members M
of family 97, are called teams. All the fcllowing considera-

tions are done in the category & .

- 105 -



We say that the gociety R = {Y, 9t ) 4is inductive
created by a morphism f: S = (Y, % » —> R, iff. NcY ,
N &€ Mée— £ 2(N) 6 % . The morphism £ 1is called an
inductive morphism (for R ).

Let S be a society, ¢S be a cardinality of a sma;l-—
est set Y (as to the cardinality) for which there exists a
couple (£, 24 ) such that the society R = <Y, 22> is in-
ductively created by the morphism f£f: S—> R . It is easy to
prove that the composition of two inductive morphisms is' an
inductive morphism.

Let x, y be two different elements of a team of socie-
ty S= (X, %) . Let S/x~y be the society inductively
created by a canonical morphism ny: S—» X/x~y (where
x~y 1is the equivalence which identifies only two points: x,
T )e

Lemma: Let § be a society. Then ¢S & @S/x~y £
&£pS+1l.

Proof: The inequality ¢S & ¢S/x~y 1is trivial. We
say that a society S = <X, 9% > is discrete iff % =
=£4{x} | xeX?t. We sign D, discrete society such that
card D) =n . Observe that if R = (Y, 9 > is an inducti-~
vely created society by a morphism f: S— R , card R =
= ¢S , then R is a discrete society (see the definition
S/x~y ). .

Now we can prove the second inequality. We construct a morph~
ism g from the soclety S/x~y onto the discrete society
T, cardT &S +1:Llet £:S=<KX, M >—> D, =

= {l1,n], {41#| 1 €[1,n)3> be a morphism. Define the
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mapping g by g,x\ $x,y3° £, glx~y) =n+ 1. from
this follows (S/xAy £@S + 1.

Theorem 1: Let S be a society, ¢S =n ,let mZn
be natural numbers and let £: S—»Dm be an inductive morph~-
ism., Then for each n£k£m there exists an inductive morph-
ism h: S—=D_ .

Proof: Let S=«X,%l> , card X < @, »

We deecompose the given morphism f in the finite number of
meppings f£;: T;—> Ti+l s, 1€ [1,p] , such that £; is in-
ductive morphism, Ty =S , card T; = card Ti+1+1 (every mapp-
Pxy ).

Applying Lemma it must exist the company 'J.'i in this decom=-

ing fi is of type

position, for which is ?Ti = k . The existence of inductive
morphisms hl: S—hTi ’ hz: Ti——>Dk is evident. We put

h = hlh2 .

S——Ds/vay——* oo ‘-_bri—+ see —'ﬁ'Dm

|

B Dy

Let card X 2 Wo , let g S—>»D, , f: S—>2  Dbe
inductive morphisms. Let 4G4t ;_, and {I-‘J} j=1 be two
partitions of X corresponding to the kernels Ker g , Ker £ ,
For every 1, § with Gyn Fjr#-d we choose a point ¥yy €
G'Gin FJ o We sign the set of all these points Y . Let the
mapping e: X—>Y map each set Gin FJ onto the point Y13 o
We sign R the inductively created society on the set Y by

the mapping e . Clearly there exist inductive morphisms

- 107 -



g’ ( £° respectively) onto D, ( D, respectively). They

are defined by fle= ¢ ’ g'e =g.

Clearly card R <« @), » 80 by the first part of the proof
there exists an inductive morphism I R—-ka « We put h =
b’e .

Corollary: For the given natural number k , n<k<n,
there are at least two different inductive morphisms h: S—=»
—>D, , hj: $—>D .

Proof: We preserve the notation of the proof of Theo~-
rem 1. Let us choose a couple < x,y> € Kerf - Kerh . Apply-
ing Lemma and Theorem for S/x~y we obtain the inductive

morphism hi: $/x~y—>D, . We put h; = hl’ny . Clearly
hihy (h is the morphism defined in the preceding proof).

Definition: We call the partition a complete 97Z-par-
tition of a set X 4iff it corresponds to the kernel of some
inductive morphism from the society (X, 7¢ > in a discrete
society.

Obviously this coincides with the definition of the complete

W -partition given in [3]: a complete 7% -partition of

X of order k 1is a partition £S;,...,S,% of X such that
each S; € % and S;uv S5 € W for i+j .
S =

Theorem 2: Let m>n be natural -numbers, let
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= (X, % ) be a society snd let there exist a complete
L -partition of X into m (into n , respectively) clas-
ges., Then for each k , n<k<m , there exist at least two
different complete ! -partitions into Xk classes.

The proof follows immediately from Theorem 1 and its Co-

rollary.

We want to thank J.Ne3et¥il, far his valuable help and

advice.
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