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OOISrlENTATIONES' MATHEMATICAE UNIVERSITATIS CAEOLINAE 

1 7 , 1 (1976Í 

NOTE ON HOMOKDRPHISM INTERPOLATION THEOREM 

Marek BOGTJSZAK, Svatopluk BOL JAK, J i ř í TŮMA, Iraha 

Abstract; A homomorphiam i n t e r p o l a t i o n theorem for s o c i ­
e t i e s anScoTiomomorphisms i s proved. This extends s i m i l a r 
theorems for graphs and complete p a r t i t i o n s . 
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This note contains a method by means of which one can 

prove homomorphism i n t e r p o l a t i o n theorems (o f the type d i s ­

cussed i n l l - 33)# P a r t i c u l a r l y , we give a short proof of 

t21. Our method i s directly applicable to inf in i te objects, 

too . Moreover, we prove that with two exceptions there are al­

ways at least two different complete partit ions. Let us re­

mark that the proof is a suitable category-theory modifica­

t ion of CU. 

Let tf be the category whose objects are sets with a 

hereditary family of subsets (S ~ < X, ®fc > , N s M c Wt «$> 

*M»>H c Wl ) and morphisms are cohomomorphlsms (f: <X,^t>-

*> < Y, ?t > is a morphism i f f J f e ^ t —-» f" 1(N) e nt, ) . 

An object of category Jf i s called a society, the members M 

of family ftl are called teams. All the following considera­

tions are done in the category if • 

105 



We say that the society R » <CX, at > i s inductive 

created by a morphism f: S * < Y, # t > —> R , i f f N £ l , 

N 6 <̂fe.-.s==> f (N) « W . The morphism f i s called an 

inductive morphism (for R )• 

Let S be a society, y S be a cardinality of a small­

est set X (as to the cardinality) for which there ex i s t s a 

couple (f, fL ) such that the society R * < X, ?£> i s i n ­

ductively created by the morphism f: S—*> R • It i s easy to 

prove that the composition of two inductive morphisms i r an 

inductive morphism. 

Let x, y be two different elements of a team of soc ie ­

ty S -= <X, 1Qfiy . Let S/x/v/y be the society inductively 

created by a canonical morphism p : S—-vX/x^y (where 
**SJr 

x/vy is the equivalence which identifies only two points: x, 

y ) . 

Lemma: Let S be a society. Then 5?S «* y S / x ^ y £ 

4 g»S •*-• 1 . 

Broof: The inequality 9 S .& ^ S / x ^ y i s t r i v i a l . We 

say that a society S -* < X, W > i s discrete i f f Til ~ 

* 4-Cxl i x # X $ . We sign I)n discrete society such that 

card Dn * n • Observe that i f R « <Y, 9t > i s an inducti­

vely created society by a morphism f: S—» R , card R -» 

-=- <gr$ , then R i s a discrete society (see the definit ion 

S /x~y ) . 

Mm we can prove the second inequality, fe construct a morph^ 

1mm g from the society S /x~y onto the discrete society 

T , card T & 9> S * 1 : Let f: S a. < x, Wl > —** Dn » 

» < £ l , n 3 , - H i ? | 1 6 £ l , n J } > be a morphism. Define the 
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mapping g by g | x \ «£x y j ~ f • g (x~y) = n + 1 . ĵ rom 

this follows yS/x^/y & y S • 1 . 

Theorem 1: Let S be a society, j?S = n , l e t m^n 

be natural numbers and let f: $—*$m be an inductive morph-

ism. Then for each ns4k6m there exists an inductive morph­

ism h: S—.n-I.̂  • 

Proof: Let S -* < X, Wt > , card X < 4>0 . 

He decompose the given morphism f in the f in i te number of 

mappings t^i T i—+ T i + 1 , i e I l , p ] , such that t± i s in** 

ductive morphism, T^ -» S , card T^ * card T.+1-*-l (every mapp­

ing t^ i s of type p ) • 

Applying Lemma i t must exist the company T.̂  in this decom­

position, for which i s <p *£^ = k • The existence of inductive 

morphisms h^: S —*• T^ , h^: T^—*-Dk i s evident. We put 

•-i-г 

S / x v y — * • . . . —*-T ± —*• . . . ł > D m 

Let card X £ 6>0 , l e t g: S — ^ D n , f: S—*-Qm be 

inductive morphisms. Let 4G*} . ^ and 4-P-e i ..-.i be two 

partitions of X corresponding to the kernels Ker g , Ker f 

.For every i , j with G^A i\-4»# we choose a point y^* e 

ftG.Al1. . We sign the set of a l l these points X • Let the 

mapping e: X—*X map each set G^A F. onto the point y y 

We sign R the inductively created society on the set X by 

the mapping e • Clearly there exist inductive morphisms 
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g' ( f' respectively) onto .Dn ( i)m respectively). They 

are defined by f 'e = f , g'e * g . 

-> H 

Clearly card R -* &0 , so by the f i r s t part of the proof 

there ex is t s an inductive morphism h': R—*Dk . We put h * 

h e * 

Corollary: For the given natural number k , n-ck<m , 

there are at l eas t two different inductive morphisms h: S—-̂  

—*D k , h x : $ ~ * D k . 

I T oof: We preserve the notat ion of the proof of Theo­

rem 1. Let us choose a couple < x , y > € Kerf - Kerh • Apply­

ing Lemma and Theorem for $/x*/y we obtain the inductive 

morphism h^: S/ncvy—>D^ • We put hĵ  = h^p • Clearly 

h ^ h ^ ( h i s the morphism defined in the preceding proof) . 

Definit ion: We c a l l the p a r t i t i o n a complete ^ - p a r ­

t i t i o n of a set X i f f i t corresponds to the kernel of some 

inductive morphism from the socie ty ( X, W* > in a d i sc re t e 

socie ty . 

Obviously t h i s coincides with the def in i t ion of the complete 

l i t - p a r t i t i o n given in £33: a complete # £ - p a r t i t i o n of 

X of order k i s a p a r t i t i o n 4 S-̂ , . . . ,$ k ? of X such t h a t 

each ^ 6 W and S±u S, $ # t for i + j . 

The pre m 2: Let m> n be natural ^numbers, l e t S = 
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-=- <X, Wl > be a soc ie ty aid l e t there exist a complete 

Wt -pa r t i t i on of X in to m ( in to n , respectively) c las­

s e s . Then for each k , n < k < m , there exis t at least two 

different complete VL - p a r t i t i o n s into k classes . 

The proof follows immediately from Theorem 1 and i t s Co­

r o l l a r y . 

We want t o thank J .NeSe t r i l , far his valuable help and 

advice. 
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