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EXACTNESS OF THE SET-VALUED COLIM

J. ADAMEK, J. REITERMAN, PRAHA

Abstract: It is well-known that, in the category of
sets, filtered colimits commute with finite limits; thus,
if Kk 1s a filtered small category then the functor

colim: Setx-—» Set 1is exact (i.e. preserves regular epis
and finite limits). The converse is proved in the present
note and other properties of c¢olim are investigated and

compared with these of colim: Ab5—s Ab for the category
Ab of Abelian groups.
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I. Forpmulation

I.1l. The exactness of colim <for Ab has been inves-
tigated by Isbell and Mitchell [2], [3] . In that case colim
is exact iff it preserves equalizers and iff it preserves
monics. For the set-valued colim (i.e. ror colim : Setx-——*
—> Set ) these properties differ. We shall prove namely the
following propositions (see part III).

I.2. (a) colim preserves monics iff every diagram (x)
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(x) (e %)
in K 1is a part of .commutative square (i x)

(b} colim preserves equalizers iff K has filtered
components, i.e. iff K fulfils the condition of (a) and

for every pair f, g of parallel morphisms there is k with
kf =kg ,

£
/————\ K

q

(c) colim is exact iff KX 4s riltered, i.e. iff K
fulfils the conditions of (a),(b) and for every pair 4, B
of K-objects there is C with Hom(A,C)% @ Hom(B,C) .

I.3. This characterization is rather simple in compa-
rison with the Ab case. Colim: Ab\—s Ab is exact 1ff
the following category aff K has filtered components: ob-
Jects of aff K are just the objects of K ; morphisms from
A to B are those elements 3= o¢f; of the free Abelian
group over Homg(4,B) for which = oc; =1, see [3].

I.4. It is easily seen that 1) aff K has filtered
components provided that X has, 2) if arf K has filte-
red components then K fulrfils the condition of (a) . Thus,
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K

X — > Set

denoting A = colim : Ab—p Ab , S = colim : Set
we get

S 1s exact ===» S preserves equalizers ==>A i3 ex-

act == S preserves monics

None of these implications can be reversed. The counterex-
amples are easy (according to I.2, I.3) except that to the
second implication: for the category K o1 rinite ordinals
and order preserving inJectibns, A 1is proved to be exact

in [3) but the only component of K is not filtered.

II. Rela o _indeco ble functo

II.1. Colimits in aet:ag‘r are closely related to indecom-
posability: a functor F: K—»Set is indecomposable if when-
ever F =F;v F, then F, or F, is the constant functor
to @ . Notice that F is indecomposable iff colim F is &
singleton set.

Let us observe that each non-trivial functor F: K —»
~» Set can be decomposed into a sum of its components, i.e.

maximal indecomposable subfunctors , F = &.l‘LI £y If wm:

"

: F—»F  is a transformation and &~ 3} F; is a decom~
2€d 7]

position of £ into components then for every 1€I there
is c(1)ed with @(Fde Fo(y) « We have colim F =1,
colim #” = J y colim et = ¢ . From these observations one

K

can derive the following properties,of colim: Set —» Set .

II.2. (a) colim preserves monics iff each non-tri-
vial subfunctor of an indecomposable functor #: K—> Set
is indecomposable, too.

(vl colim preserves equalizers iff indecomposable
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functors from K to Set have always the following "agree-
ment property”: for each couple @y P F—F’ of

transformations there is X and xeFM with Gyx = 9Mx .

(e) colim preservea finite products iff the product
of two indeoomposable functors from K to Set is indecom—
‘posable, too.

II.3. The exactness of colim 1in the Ab case can be
also characterized analogously [1) : colim: AE~> Ab 18
exact iff the agreement property from (b) holds for all cou-
ples of endo-transformations of indecomposable fﬁnctors from
K to Set ; equivalently, iff each endotransformation (w :
: F—» F of an indecomposable functor F: K—>Set has a
fixed point (i.e. x in some #M with GyX=x ).

III. Proof

IITI.1. Necessities in I.2 follow from II.2 if we take
into account that ] ’

(a) the subfunctor F of Hom(M,-) generated by <£:
: M—>C , g-: X—>D must be indecomposable (then we have
£: C—»E, g': D—»E with ££=¢g'g),

(b) the transformations Hom(f,-) , Hom(g,-):
+ Hom(N,-)—> Hom(M,-) must coincide at some Xk &Hom(N,C) ;

and sll monics are equalizers in setk ’

(¢) the product Hom(M,-)x Hom(N,~) must be non-tri-
Vial.

ITT1.2. Sufficiencies. (a) Let #£: K—» Set be gn in-
decomposable functor. To prove that all subfunctors of F
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are indecomposable it suffices, for given xefM , ye FN ,
to find h: M—»Z , k: N—»Z with Fh(x) = Fk(y) . Fix
xeFM .

For every objeet T put HT = {te¢ FT ; there are h:
: M2, k: T—»2 with Fh(x) = #k(t) 3 ; we shall prove
that H=F . First, H 1s a subfunctor of F: given teHT
and given a morphism 'p: T—-»Tl we héve h: ¥—» 2 , k:
: T—»Z with Fh(x) = Fk(t) ; since p, k have g common do~
main there exist p’, k° with p p kk . This proves
I-‘p(t)em‘l , because F(k’k)(x) = #p (Fp(t)) .

Second, F - H (defimed by (F - H)T =T - HT ) i3 a sudb~
functor of F , as is easily seen. Since F is indecomposab-

le and F =Hv(F ~H) , either F=H or F=F~H. The
latter cannot occur, since xeHM .

(b) Let (&, » : F~»F  be transformatio.s between
non~-trivial indecomposable functors. Chcose ze F arbitra-
rily and put x = ypzy Y= vlz « Via the previous part
of the proof there exist h, k: M—»Z with £ h(x) = #'k(y)
Choose p: Z—» T with ph =pk and put t = #(ph)(x) . Then

4yt = £7(pn)(2) = #7(pKk)(2) = Pgt .

(¢) 1s well known.
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This concludes the proof.

IV. A corollsry

IVel, Let T .be a cocomplete category which has a full
subcategory D 4isomorphic to Set and closed under colimits
and finite limits. Then we have
TK

colim: —» T is exact ===) K 1is filtered.

Indeed, if colim: TK-—->T is exact so is colim:
: DX—»D » the latter being a restriction of the former one.
As D~~»Set , K 1is filtered by I.Z2c.

IV.2, The above corollary applies e.g. to the category
of
-~ topological (resp. uniform) spaces,
- graphs,
- unary algebras of a given type
and tc TL for any such T and any small L .
In all of these examples filtered colimits commute with fini-
te limits (as is easily seen) so that we have

colim: TK——-»'.E is exact Gy K is riltered.

References

{11 g. Anﬁm, J. REITERMAN: rixed points in representa-
tions of categories, Trans. Amer. Math. Soc.
211(1975), 239-247.

[2] J.R. ISBELL: A note on exact colimits, Canad. Math. Bull.
11(1968), 569-572.

{31 J.R. ISBELL and B, MITCHELL: Exact colimits, Bull. Amer.
Math. Soc. 79(1973), 994-996.

- 102 -



Elektrotechnickd cakulta Fakulta jadernd a fyzikdlng
Lvur inZenyrsks LVUT
Suchbétarova 2,16627 Praha 6 Husova 5, 11900 Praha 1

Beskoslovensko Ceskoslovensko

(oblatum 2.6. 1975)

- 103 -



		webmaster@dml.cz
	2012-04-27T23:53:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




