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BAIRE FUNCTIONS AND CLASSES BOUNDED BY FILTERS
Miroslav KATETOV, Praha

Aﬁuﬁz In [1],[2), certain classes of functions ge-
nerated by filters have been examined. In the present note,
we consider classes of spaces bounded (weakly bounded) by
a filter on a countable set. Wean{ bounded classes turn
out to coincide with classes such that there are "not toe
many” metrizable images of spaces in the class. It is shown
that, on weakly bounded classes, Baire functions coincide
with those generated by a suitable filter, depending on the
class. This result corrects an error in [1), see 4.1 below.

Key worda: Baire functions, filter-generated function,
deseriptively bounded class.

AMS: 54HOS Ref. Z.: 3.969.5

l.1., We use the standard te_rninollogy and notation
with slight modifications. The power of a set M is denoted
by |M| . The countable infinite cardinal is denoted by @ ,
the first uncountable one by w* . If oo 1s a cardinal,
expeo‘ stande for 2%,

1.2. Conventions, "“Space" always means a completely
regular Hausdorff space. "Mapping” means a mapping (comti-
nuous or not) of a space into a space or of a set into a
set, "function" means a mapping into R., the space of
reals. The set of all natural numbers is denoted by N or
@ . letters 1, j, k, n denote natural numbers; ¥ , G ,
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4 » K , possibly with subscripts, denote filters; N' deno-
tes the Fréchet filter on N ; P, S, T denote spaces. If
£: S—>T 1is contimuous, then (3f denotes the extension
to a continuous mapping of @S into @T.

1.3. The domain of a mapping f is denoted by Df.
If XcDf , then £ X denotes the restriction of f to
X,.It £: S— T , g: U—>V are mappings of spaces, then
the composition fo g 1s defined iff V 1is a subspace of
S.Ir T is a space, then F(T) denotes the set of all
functions on T , C(T) +that of all continuous fe F(T) . The
set F(T) is endowed with the topology of the product RT .

le.4. The term "filter" has its usual meaning. If %
is g filter on A , called the support of ¥ , and |Al &
& o (|2l = &« ) , then we shall say that ¥ 1s an (£ oc)-
filter (an o -filter). (Observe that, in [l],[2],. "filter”
mears what is called a free o —filter here.) -~ If ¥ is
a filter on A , and MCA intersects all P& :%' , then
the filter {PNM|P eF} , denoted by & MM , is called
the trace of § on M.

‘1.5, A morphism (ef.[2], 1.9) from & (on A ) to G
(on B ) is, by definition, a triple < g, ¥, G >, where
@ : A—>B is a mapping such that Y e G implies
@ 1Y € . If there exists a morphism from ¥ to G
we shall write ¥ 2 G or G & F . The class of all
filters will be considered as quasi-ordered by the relation

g L]

1.6 Let ¥ be a filter on A . Let T be a space.
Ir -{xw\aéAZ is a family of points of T , xeT and,
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for every neighborhood V of x 4n T , there is & set

P e % such that aeP implies x,6 V , we shall say that
x 18 the #-limit of ix.3 (in T ) and we shall write
x=F-ln{x, | aed} or x=F-limx, . If XcT , them
4 -1im X denotes the set of all x€T such that x =
§-lim x, for some {x,} € XA,

1.7. Let & be a filter on A . A function f will
be called & -generated if f € F -Lim C(Df) . The class of
all % -generated functions will be denoted by Cg(F) .

1.8 If £ is F-generated, then every fo o , whe-
re ¢ 1is a continuous mapping, is § =-generated. If & is
a filter on A , £ is % -generated, then there is a conti-
nuous Y 3 Df.—-> RY and an % -generated g on 3 [ Df] such
that £ =goy -

Proof. Let f = F-Iim £, s £5€C(Dr) . Clearly, fog =
= §-lim fa°® . Put yx={fx}, for every xeDf . Then
Y : Df—> RY 1s continuous. Put Y = ¥ LDf] . For y =
={ya'i eY , put ga(y) =y, &nd let g(y) be defined by
gly (x)) = £x . Clearly, 8y € c(Y) , g=F-limg, , r =
=ge0 ‘q}' -

le9, If ¥ 1s a filter on A, A}l =w , and §
contains a dense countable set, then |5 -Lim C(S)l gexpo® .

Proof. 1C(S)\ & expw , hence I(C(S)IA| & exp @ -

1.10, If ua \aeA} is a family of sets, then
S 4M |aeAd or =M, denotes the set {(a,x>| ae4,
xeM.3 .
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2.1. Definition. Let {#,| ae A} be a non-void fami-
1y of filters with supports la o The filter on X M, con-
sisting of all E‘J" » where F_ & §, for every a , will
be called the sum of {#,7 and will be denoted by
MiF,|aeh} or by = F, . The rilter on TIM, with
subbase consisting of all :n';ltl'.] , where aei , F €7, ,
rq 1s the projection of TI M, onmto M_ , will be called
the cartesian product of £{%,3 and will be denoted by
248, leea} or Tgy - We write ¥, + , instead
of ELF,|1=1,27, ete.

2.2. Propositiop. If {F,% 1s a non-void femily of
filters, then TT?. is a join and 2?’. is a meet of
{3'.1 in the quasi~ordered class of all filters. -

The proof is straightforward and may be omitted.

2.3. Definition. The least power of a collection M c
c & such that "M =NF will be called the pseudo~
weight of § . - Clearly, the pseudoweight of § is @
ire 2 N .

2.4. Proposition. Let ec be an infinite cardinal. In
the class of all (& oc)-filters, every set of power
& exp & 1is bounded. -~ Cf. [ 2], 1l.1ll.

Proof. Let |Al& expoc , AZ0 . For every a€A ,
let &, be a filter on By » (Byl& c . By a well known
theorem, the product B = TTBa of discrete spaces By
eont‘aim a dense set H of power & o . The injection
F—>B 4s a -morphiam from (TT?'&) ME to TT?'. .

2.5. Theorem. Let o be an infinite cardinal. Every
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countable family of (% e)=filters of pseudoweight « has
a joint which is an (& ec)=filter.

Proof. Let 3’]: , ke N, be filters of pseudoweight

on sets M, , | M |£ec Put M=TIN , g = 1T3'k « Choose
a sequence -iukiell . Let H consist iof all -ixkbel such
that x, = u, for almost all k . Clearly, |Hl & o< . Put
%= FMH . Then every projection or, is a morphism from
% to &, . Hence ¥ Z § (see 2.2).

Since &, are of pseudoweight < , there exist mapp—
ings fy: M —> N such that every <{x)|xeM, , r(x) 2 e}
is in ?’k « For every x ={x,3eM let p(x) be the lar-
gest peN such that -fkﬁxk)ép whenever Ogkg&p o Put
g(x) =473 where y, = x, for xéplx) , Y =W for
k>p(x) . To prove that ¢ is a morphism from & to ¥ ,
it is enough to show that, for every qeN and every F e
e ?ﬁ y there is a set We F such that if xeU , ¢lx) =
=-iyh’} y then yqu o« Let U consists of all x ={xk'§el
such that xqu , fk(xk)Zq for ké&q . Clearly, Ue ¥ .
If xeU, then p(x)Z2q , hence, with £y, i = @(x) , we
have Ve =Xy for k&q . This proves the theorem.

2,6. Corollary. Every countable family of w =filters
has a join which is an @ =filter. - Cf. [ 2], 1l.1l.

2.7. Remark. The note L2] contains a statement (4.5),
which may be re-formulated as follows: Let ¥, , neN , be
w=filters. Put D = CUF,) . Then (1) in the class of
all o -filters, 1% % has a join, (2) there exists a class
@ of the form CR(G) , where G 1s an c -filter, such
thet (1) CR(G) > D for all n, (11) if ¥ is an @ -
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filter and CA(®) > D, for all n, then CARXI>CR(G) ,
(3) the clgss & 1is equal to CL(F) where ¥ 1is a joinm
of {F,3 4in the class of all w -filters.

We have proved the first assertion (in fact, slightly
more). As for assertions (2),(3), the intended proof fa':lls,
and the question remains open whether (2) and (3) are valid.

3.1. Defipnition. If ScT , then 7 (S,T) or simply
%S will denote the characteristic functionof § in T .
We shall say that ScT is F-generated in T if «(s,T)
is % -generated. We shall say that & bounds a class 777
of spaces if every X e 9  is
pact T .

F -generated in some com-

3.2. It is easy to see that a space S is ¥ =boun-
ded iff 1t is ¥ -generated in (S .

3;3. A continuous mapping f: S—> T 1is called per—
fect if (1) all £71y , yefs , are compact, (2) fM is
closed in f£S whenever M 1is closed in S .

3.4. The following facts are well known: (1) every
continuous mapping of a compact space is perfect; (2) 1ir
£: X—>Y 18 perfect, McY , then £ M(f™ M) 4s perfect;
(3) if f£: X—>Y is continuous, Z 1is dense in X.,
£1MZ 1is perfect, then L ZlnflX -21=¢g,

" 3.5. Conventions. If there exists s continuous (per-
fect) mapping of S onto T , we shall say that S is a
continuous (perfect) counterimage of T and that T is a
continuous (perfect) image of S . If, in addition, e.g.,
§ 1s metrizable, we shall say that S is a metrizable
continuous (perfect) counterimage of T , etc.
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3.6. Every perfect counterimage of an % -bounded spa-
ce is & -bounded.

Proofe If f: X—— ¥ is perfect onto, then, by 3.4,
(3), (B£)lrY1=X, hence, by 1.8, X 4s #F-generat-
ed in 3X .

3.7. Let ¥ be an (£ < )=filter. Every F -bounded
space is a perfect counterimage of a space & —-generated
in & compact space of weight & oc .

Proof. Let S be & =-bounded and let 7 (S,S) =
= F-lim {f_laeck3. For x €3S put @x =4f x}. Then
@: 3s—>R* is continuous, S = ¢} [@S1. By 3.4, (2),
¢MS is perfect. Clearly, ¢S 1is F -generated in
v [Bsl.

3.8, Let 7L be & class of separable metrizable spa—
ces such that (1) if ¥ € Ml , YcX 4s closed in X , then
Ye®W , (2) if K is compact metrizable, X € 7T, then
K=xX is homeomorphic to a space in %9 .Let S be a per-
fect counterimage of a space in WL, If g: S—> T is con-
tinuous and T is separable metrizable, then gS 1is &
continuous image of a space in WL .

Proof. We may assume that T 1is compact. There ex=—
ists a perfect f: S—>» K such that K is compact metriz-
able, Y=£S 4in W ,5=2¢1y, For x € 3S , put
ox = {(Bf)x , (Bg)xy . Then ¢: 3S—> KxT is con-
tinuous., Put Z = @[3 S1. By 3.4, (3), (Rf) [B3S - S1In
AfS =@ , hence ¢S =2Zn(¥=T) , PSS is closed in
¥T=xT , and therefore @S € W(. Clearly, the projectiom
KxT—>T maps ¢S onto &8s .
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3.9. Definition. A class %L of spaces will be called
@ =filter-bounded or descriptively bounded it there is an
@ =filter bounding 79T .

3.10. Proposition. A space X 1s descriptively boun-
ded if and only if it 1s a perfect counterimage of a separ-
able metrizable space.

Proof. "Only if" follows from 3.7. If f: X—> Y 1is
perfect on‘t;o a metrizable separable Y , let KoY be com
pact metrizable. Clearly, C(K) endowed with the sup-norm
is separable. Hence, for some w-filter & , ¥ is ¥ -
generated in K . By 3.6, X 1is ¥ -bounded.

3.11. Remark. It is well known that perfect counter—
images of metrizable spaces coincide with paracompact M-
spaces, introduced by K. Morita, and with paracompact p-
spaces, introduced by A. Ak}angelekii (for this theorem and
further references see e.g. [41). It is easy to show that
descriptively bounded spaces coincide with Lindelof M-
spaces ( p-spaces).

3.12¢ Let 23 be a collection of separable metriza—
ble spaces, |¥.]| g expw . Let 9L consist of all metri-
zable continuous images of spaces in ®RT . Then 9L is des~
criptively bounded.

Proof. Clearly, every X € 90 1is separable. It is
easy to see that [4X| XcE¥ s X 6793/ £ exp . For eve-
Ty Tedt , xc R’ , choose an w=-rilter & (X) bounding
X . By 2.4, there is an @ =filter & such that &z ¥ (X)
for all X € %L , XcBY . Clearly, & bounds 7L .
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3.13. For every o -filter & , there are exactly
exp @ & =bounded subspaces of RY . - This follows ea-
sily from 3.7 and l.9.

3.14. Propositiop. For every « ~filter & there
exists an @ ~filter g, such that every descriptively
bounded continuous image of an F -bounded space is g -
bounded.

Proof. Consider the class L ot all & -bounded spar
ces ScRY , and the class 9L of all metrizable continuous
images of spaces in 9L . By 3.13 and 3.12, there exists
an @~filter G which bounds 9L . Assume that S is & =-
bounded, @ : S—>»P is continuous onto, P 1s descripti-
vely bounded. Then there exists, by 3.10, a surjective per=-
fect h: P—> T , where TCRN « By 3.7, S 1is a perfect
counterimage of some space in WL .Put g=h o.@ . By
3.8, T = hP = gS 1is a continuous image of a space in WL,
hence T iain 2, T is Q-bounded. By 3.6, P 1is
& -bounded.

3.15. Theorem. The class of all descriptively bound-
ed continuous images of spaces from a given descriptively

bounded class is descriptively bounded. - This followe at

once from 3.14.

3.16. Examples. 1) Compact spaces are bounded by eve-
ry filter. 2) The class of all 6§ -compact completely met-
rizable spaces consists exactly of all X' -bounded metriz-
able spaces. 3) The class of all projective spaces, in the

sense of N, Lusin, see e.g. [ 3], § 38, and their perfect
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counterimages is descriptively bounded.

4) Consider the smallest class R of separable metrizable
spaces suchbthat: (1) RY is in £, (2) if X = U
is separable metrizable, X, are in ¥ , then X € ®
(3) 4¢ X ,Y arein € , XY, then X =Y is in ¥,
(4) if X € R , then every metrizable continuous image
of X is in € . Let a space be called & -projective if
it is a perfect counterimage of a space in '{2 « It can be
shown that the class of all & =projective spaces is des-
criptively bounded.

3.17. Descriptively bounded classes possess various
nice properties. However, descriptive boundedness is not
preserved, in general, under continuous mappings (example:
Nu(x) , where x € RN=-N ). Therefore, we introduce
broader classes. It will be shown that, on these classes
(and, of course, on all narrower ones) Baire functions and
suitable filter-generated ones do coincide.

3.18. Definition. Let & be an w -filter. Let Q0
be a class of spaces. If for every X € @’ and every des-
criptively bounded S such that Xc Sbc (3X there exists
an ¥ -bounded P such that XcPcS , we shall say that
¢ weakly bounds %L . A class: of spaces will be called
' weakly descriptively bounded if it is weakly bounded by
some @ =filter.

3.19. Theorem. A class %l of spaces is weakly des-
criptively bounded if and only if the class of all sepa—

rable metrizable continuous images of spaces from P01 con~
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tains exp @ topologically distinct spaces at most.
Proof. I. Let 99! be weakly bounded by an w -filter
¥ . Let § possess properties described in 3.14. If Yc
c RV , Xe % , f: X—>Y is continuous onto, put g =
= (3f . By 3.4, (2), and 3.10, g-lY is descriptively
bounded, hence there is an & -bounded 2Z such that Xc
1Y . By 3.14, Y =gZ is G -bounded. By 3.13, this
proves the "only if" part. II. Let £ be a maximal col-

cZcg

lection of topologically distinct separable metrizable con-
tinuous images of spaces from 99f. Assume l'pl & expa . By
3.12, there is an @ ~-filter G which bounds ¥ . Let Xe€
€ 9t and let S be descriptively bounded, XcScRX .
By 3.10, there exists a perfect f: s—» RV e« Put Y =¢s,
By 3.4, (3), s = g-lY , where g = (3f . Since fX is

G -bounded, g'lf fXJ is also G -bounded. Clrarly, Xc
cglrexies .,

3.20. Examples. 1) The..class of all & -compact spa-
ces is weakly descriptively bounded (cf. the example in
3.17). = 2) A discrete space of infinite power « is weak-
ly descriptively bounded iff expec = exp @ .

4.1, In[1], 5.4, it was asserted that, under the
continuum hypothesis (CH), there exists an w =filter &
such that (%) Baire functions coincide with & =-generat-
ed ones. This is false, as the following elementary ex—
ample shows. Let § be an @ -filter generating all Bai-
re functions. Let T =<§ | §<cut? be endowed with the
discrete topology. For every § € T let fge F(R) be
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exactly of Baire class € . For < ¢ ,x?€TxR put
b 4 <§ X9 = fi X o Clearly, f 1is & -generated, but is not
a8 Baire function.

However, it can be shown that the assertion (%) is
true (under CH) if the class of spaces considered is suit-—
ably restricted.

4.2, We recall the following lemms stated and proved
in [1], 5.1 (for the definition of a Souslin filter, see
£13, 3.1, 3.2). =~ Let P be a collection of spaces, |WLI&
Eexpcd . For every S € ¢ 1let QgcS , ZgcS be of
power & exp ¢ . Assume that Zg r G -Lim Qg = g for eve-
ry Souslin filter G . Let & be & Souslin filter on a set
A . If the continuum hypothesis is assumed, then there ex-
ists a family <§¢|§<w*? suchthat (1) F=7F, (2)
every ?g is a Souslin filter on A , (3) f< 7 < w*
implies ?’E c ¥y, (4 if §<m < ot , then every Bai-
re function (on any space) of class €. 1is ?n-generated,
(5) if S €W , zeZg , x,€Qg for every a€A , then
there is a neighborhood V¥ of 2z in S and a set M e
gu4$’§ l§< w* 3 such that agM implies x, noneV ,

4.3, Assume CH . Let 9 be a collection of separab-
le metrizable spaces, | 1&g exp . Let G be an @-fil-
ter generating all Baire functions on spaces P € 2 . Then
there‘ is a filter % on N such that, on spaces in 2,
Baire functions coincide with (G +X)-generated ones when-
ever K is a filter on N , ¥ o & .

Proof. Let W! be the collection of all F(P) , P e
e . Ir S =7rP), put Q = C(P) , and let 2Zg con-
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sist of all those f € Q. -Lim C(P) which are not Baire
functions. Put ¥ = N . Then the assumptions of 4.2 are sa—
tisfied (since; by [1], 3.10, a function generated by &
Souslin filter is @ Baire function). Hence, by 4.2, there
is a family {3’; % with properties described in 4.2. Put
¥=UiFl§<o%3 . 1r A o3 1sarilteron N,
then every Baire function is' ¥ -generated and no @--gene-
rated function on a space P ¢ 8 1is ¥ -generated unless
it 1s & Baire function. This mroves the assertion, since,
clearly, CG +X) = C(G)nCUX) .

4.4. If f is = Baire function of class § < w* ,
then there is a continuous ¢ : X —> RN such that £ =
=go @ , where g 1is a Baire function of class E on
@X .

This follows from 1.8, since, by [1], 2.17, Baire func-
tions of class § coincide with .X‘g-generatod ones (for
the filters J{'-;E see [1], 2.7).

4.5. Let ¥, ,1=1,2, be filters on a set A . Then
(VD F+5 & 4nF, (2) if there are X;€ 3; such
that XA X, =8 , then $4n F 2 9+ 7, .

Proof, I. If ¢<{i,x> =x , then ¢ 1s a morphism
from Fy+ % to &, nF, . II. let X; € #;  be disjoint.
Put gx=<1,x) if xeX; , ¥x=<2,x) if xeA-X) .
Then 4 is a morphism from %, n % to % + 3"2 .

4.6. Theorem. Assume the continuum hypothesis. Let W%
be a weakly descriptively bounded class of spaces. Let Q
be a filter ona countable set A generating all Baire func-

tions. Then there exists a filter % on A such that, for
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every filter W > & on A , Baire functions and
(G X )-generated ones coincide.

Proof. Let £ consist of all those ScRF which are
continuous images of some space X € W . By 3.19, [R] £
Lexpw. Let & be a filter on N with properties des-
criﬁed in 4.3. Let 9 : N—> A be injective and such that
A-%¥Ne G, The collection of all Xc A such that X 2
2 Y H for some He ¥ is a filter on A , which will
be still denoted by ¥ . It follows from 4.5 that, for eve-
ry rilter X o X on A, (GNX)-generated functions
on spacess S € R coincide with (9+x)-generated ones,
hence, by 4.3, with Baire functions. By 4.4 and 1.8, this
holds for every S s 991 .

4.7. Proposition. There exists an w -filter geners-
ting all Baire functions.

Proof. By 2.4, there is an w =-filter & such that
£2 N rorall g< @t .

4.8, Theorem. Assume the continuum hypothesis. Let
WL be a weakly descriptively bounded class of spaces. Then
there exist < -ultrafilters &, G  such that, on spaces
in WL, Baire functions and (%A G- )-generated ones coin-
cide.

This is an immediate consequence of 4.7, 4.6.
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