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>

groupold is called

commutative if it satisfies the identity ab = ba ,
idempotent if it satisfies the identity aa = a ,
abelian if it satisfies the identity ab.cd = ac.bd ,
-~ distributive if it satisfies the identities a.bc =

= ab.ac and bo.,a = ba.ca .

For the sake of brevity, the commutative idempotent abe-
lian groupoids will be called CIA-groupoids. Clearly, every
CIA-groupoid is distributive,

The purpose of this paper is to describe a general met-
hod of obtaining CIA-groupoids, We shall prove that a grou-
poid G is a CIA-groupoid if and only if there exists a uni-
quely 2-divisible commutative semigroup S(+) such that
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GeS and xy = 1/2(x + y) for all x,ye G . Moreover, we
shall show that in general we cannot demand the equality G =

s S .

1, Some properties of distributive groupoids. Let G
be a groupoid, A non-empty subset I & G is an ideal if

abe I and bae I , whenever ae€e I and b€& G, In such
a cage, we can define a congruence relation r on G as

follows:
(x,y>e€ r 1ff either x=y or x,ye I,

The carresponding factor-groupoid is denoted by G/I .
If G is a groupoid then Id G will denote the set of
all idempotents of G .

1.1, Proposition. Let G be a distribytive groupoid,
Then
(1) Id G is an ideal of G ,

(i1) a.bce Id G and ab.ce Id G for all a,b,c€ G .
(1ii) The mapping X+ X.XX = xX.Xx 1is a homomorphism of
G onto Id G,

(iv) G/Id @ has just one idempotent.

Proof., (i) We have X.XX = XX.XX = xx.x and (X.xx)
(XexX)= XX.XX = X,xx for all xe G, Thus x.xx e Id G and
Id G is non-empty, If ae€ Id G and be G, then ab.8b =
= ga.b = ab and ba.ba = da ,

(ii) We can write a.bc = sb.ac = (ab.a)(ab.c) =
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= (aa,ba)(ab.c) =((as.b)(aa.a))(ab.c) . Since am.ae Id G
and Id G is an ideal, a.bc € Id G . Similarly, ab.c €
€Id G,

(iii) and (iv) are easy.

1.2, Proposition. The following conditions are equiva-
lent for a groupoid G :
(1) & is distributive and Id G contains just one element.
(11) There is an element Oe G such that a,0 = 0 = O.a
and a.bc = O = ab,c for all a,b,c e G, .

Proof., The proposition is obvious from l.1l.

Every groupoid satisfying the equivalent conditions of
1.2 will be called a BD-groupoid.

l.3. Broposition, Let G be a distributive groupoid.
Then Id G 1s an idempotent distributive groupoid and
G/Id G 1is a BD~groupoid. Moreover, G is isomorphic to a sub-
direct product of Id G and G/Id G .

Proof. Apply 1.1 and 1.2,

1.4, Proposition. ILet f: G—>H be a homomorphism of
distributive groupoids. Then £ induces two homomorphisms
g: Id G—>Id H and h: G/Id G —> H/Id H . Moreover, if £
is injective (surjective) then both g and h are so .

Proof. An easy work. -
A groupoid is called triabelian if every its subgroupoid
generated by three (not necessarily different) elements is

abelian.

1.5. Propogition. (i) A distributive groupoid is tri-
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abelian iff it satisfies the identity ab.ca = ac.ba .

(11) Every commutative distributive groupoid is triabe-
lian.

(iii) Every distributive cancellation groupoid is tri-
abelian,

Proof. (i) The "only if" part of the proof is obvious,
For the "if" part we can assume that G is idempotent (due
to 1.3 and to the fact that every BD-groupoid is abelian).

Pirst sﬁppoae that a,b,c,d are four elements of G sa-
tisfying ab.cd = ac.bd . Denote by S(a,b,c,d) the subgrou-
poid generated by a,b,c,d . Ag it 18 easy to see, the set
{x| ab,xd = ax.,bd} is s subgroupoid containing a,b,c,d , and
hence ab.xd = ax.,bd for all x e S(a,b,c,d) . Quite similar-
1y we can prove that ay.xd = ax.yd for all x,y € S(a,b,c,d).

Now let a,b,c € G be arbitrary elements. We are going
to show that the subgroupoid S(a,b,c) agenerated by a,b,c
is abelian. Since ab.cb = ac.bb and ab.cc = ac.bc , ax.yb =
= ay.xb and ax.y¢c = ay.xe for all x,y € S(a,b,¢c) , The
subgroupoid 4z | ax.yz = ay.xz } contains thus the elements
a,b,c and we get ax.yz = ay.xz for all x,y,ze S(a,b,c) .
From the reason of symmetry, bx.yz = by.xz and cx.yz =
= O0y.XZ , and consequently ux.yz = uy.xz for all u,x,y,z €
e S(a,b,c) .

(11) This assertion is an immediate consequence of (i).

(11i) It is proved in [1] that every distribufive qua=-
sigroup generated (as a guasigroup) by three elements is abe-
lian, According to L5], every distributive cancellation grou-
poid is a subgroupoid of a distributive quasigroup and the
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asgsertion follows easily.

Remark. The following problem seems to be open. Is eve-
ry distributive groupoid triabelian?

A congruence r of a groupoid G i1is called normal if
the factor G/r 1is a cancellation groupoid. A groupoid is
called ideal-simple if it has no proper ideal,

1.6, Propogition. The following conditions are ‘equiva-
lent for a commutative distributive groupoid G :
(1) G is ideal-simple.
(i1) Every congruence of G is normal,

Proof. (i) implies (ii). By 1.1, G is idempotent., Let
r be a congruence of G , {(ab,ac> e r for some a,b,ce G
and I =4{x|{xb,xc>€e r3}, As one may check easily, I 1is
an ldeal and therefore I = G, Thus < bb,bc>€ r and

{cbyecc>e& r, and so {(byeder.,

1.7. Corollary. (i) Every ideal-simple commutative dis-
tributive groupoid is an idempotent cancellation groupoid.
(1i) Every commutative distributive division groupoid is

a quasigroup.
(1ii) Every congruence of a commutative distributive qu-

agigroup is normal,

Example., Let Q be the set of all rational numbers and
X*% y=2x -y for all x,ye Q , It is easy to check that
Q 1is an abelian idempotent quasigroup with respect to x and
the relation r , defined by {(x,y>e r iff x -y is an
integer, is a congruence of Q(* ) ., However, r 1is not nor-

mal, since (1/2 % 1,0 % 1> € r ., The factorgroupoid
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Q(>x )/r 1is an ideal-simple distributive division groupoid
which is not cancellative,

Let H be a subgroupoid of a groupoid G ., We say that
a congruence 8 of G 1s an extension of a congruence r

of H if r=8n (Hx H) ,

1.8, Proposition. ILet G be a subgroupoid of a dis-
tributive quasigroup Q such that G 1s contained in no pro-
per subquasigroup of Q , Then every normal congruence of G
can be extended to exactly one normal congruence of Q .,

Proof. Apply Zorn ‘s lemma for a more detailed proof,
see [ 4],

2, Congruences of free CIA-groupoids. Denote by R the
set of all rational numbers 2 Z,c , where c¢ 4is an integer

and m 1s a natural number., For every n = 1 , the cartesian
power R® is a CIA-quasigroup with respect to the operation
o defined by

(81.-.'an> o ¢ bl,oto’bn> = < 1/2(31 + bl)"oo
...'1/2(an + bn) 2 .

In fact (see [31), R® 4is a free CIA-quasigroup and the ele-
ments eg 2 { 0,04000,0% , erll = (1,0,,.0,0> , e'z‘ =

= €0,1,05000,0) 4uusy ep = < 0,...,0,1> are its genera-
tors. Let F, denote the set of all < 8yrecer8y ) € R® sa-
tisfying a; 2 °’“"°n
ly, F, 1s a subgroupoid of R® . As it 18 proved in [3],

Pn is a free CIA-groupoid and the elements eg, e?_,...,e:

2 0 and 8y + .00 + ané 1 . Clear-
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are its free generators. Further define

Pii= {Cagyeensayd € Fnlai =0% for i =1,2,..0,n ,

Fow = 1C8y,..058 > € Fnlai +eeet B = 1%,

By = Fg\ By for 1=1,2,...m,
Ho = Fn\ Fn’* and

Int Fn=Fn\ (Fn’lu Fn’2Ut'. UFn’nuF ) -

nyx .
It is not difficult to show that all these sets are subgrou-
poids of Fn « Moreover, Int Fn is ideal-simple and it is

an ideal of Fn .

The following lemma is proved in [41., However, the proof

is easy.

2.1, Lemma. Let A be a subgroupoid of F, with
Int Fns A and r be a congruence of A . If {a,aeb der

for some a€ A and b e Int F, , then <a,b Yer.

2.2, lemma, Let r be a congruence of Fn and a,
b€ Hy . Then < a,bder iff <1/2a,1/2bder .
Proof. The direct implication is easy. To prove the

converse, first assume that (al,...,an> = a € Int Fn o Sin-
ce (bl,..,,bn) =beHy, by +eee+t b < 1. For every
i= 1.2’0.. , let

oy =< 2'1a1 + (1 - 21'1)b1....,2'1an + (1 - Zl'i)bn>

4 = <@ -2, -2,
< -1 ‘i
Py = (1 +2 )bl,...,(l + 2 )bn) and
ay = <2¥ta) ¢+ @ - 2,02t e s - 2 )
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As it is easy to see, the following equalities hold:

cl = (l/2&1,-..,1/2&n> = 1/23 Y dl = I/Zb ' ql = 8 ,
Ci41 = 04° P s dy9 =dy° b, 94,y =93cb, o5& F,,
pié R® v 94 € Int Pn' dio pi-b and 640Dy = Qg5 «

Since b1 +oeot bn< 1, there 18 k=1 such that Py €
€F . Then <o),d;7 €r, <oydyde xy..., Cop,dpder,

{epopdyop 7€r, and hence <q ,,b>€ r . Several
applications of 2,1 (for A = rn) give < Q410 der,

(g Yeryeee, {q,yb>€ r and <abder.

In the general case we shall proceed by induction on

ne.If n=1 then either a=b or aeIxﬂ:E‘1 or b e
>
e Int Fy (since 1'1.* ={1% and 1"1'1 =£0} )., Let n= 2,
If there exists an i€ {1,...,n? such that both a and b
belong to Pn,i s then the induction hypothesis can be app-
lied, since F is (canonically) isomorphic to P B
n,i n-l

If no such an 1 exists then aob € Int Foehe
{1/2a,1/2b) € r , we have ( 1/2a,1/2a01/2b%€ r , and
consequently < a,aob)>€ r , Quite similarly {aob,b > &

€er ,and so {a,bd>er.,

2.3, Lemma, Let r be a congruence of F, and 1€
€40,1,...,n} . Define a relation r; on F, by <a,b> €
€ ri ire < ego a,ega b>€r . Then ry 1s a congruence
of Fn *

Proof. The lemma is obvious.

2.4, Lemma, Let r be a congruence of P, . Then
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(1) rsry; forall ie40,1,...,m%,
(11) ry N (Byx Hy) = r n (Hy > Hy) for all 1e 10,1,...
eeesn §,
(i11) r=rgnrn cee N T, .

Proof. (i) is obvious, By 2.2, (ii) holds for i = 0O,
Let ie€il,...,n?. Define an automorphism f of P, by
£(CxypeeesXpy? ) = CXjgecesXy 3ol = (X7 +evet X)) .,
Ty qreeerXy) o Cloarly, £ =20, £(eB) = o], f(eD) =
= eg and f(e‘;) = e? for all J ¢40,1%. Put <a,bde @
ift < £(a),f(b)) € r . Obviously, ® is a congruence of

P, and syn (Hyx Hy) = 8 n (Hyx Ry) o If Cabdery N

A (Hyx Hy) then <e’;oa,e§ob>e r, < f'(ega a),t(egc b)e
es, < egcf(l).egor(bne s, <f(a),f(b)>e s, ,
(£(a)£(d)>e€ 8N (Hyx Hy) € s and {a,b>€eEr n
s (Hix Hi) o Thus ry A(Bix Hi)G rn (Hix Hi) .

Pinally we shall prove (iii). By (i), r s rgA XN

N eeelh o Let <( a,bde TaN P1N eee ATy As one may

check easily, there exist two numbers j,k e {0,1,...,n ¥
such that both a and ae b belong to H.‘l and both b

end aob belong to H, . We have < a,ae b e (rgn 4N
N eeanr)n (Hjx Hj)s Ty (Hax "3) =r A (Hjx Hd)s

e r and similarly <{aeb,b> € ’k”(nk" Hk)sr.rhu
<ﬂ,b>e Yo

»

3. Semigroup repregentationg of CIA-groupoids. A com-
mutative semigroup G(+) 4is called uniquely =2-divisible
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if the mapping x+— x + x is a permutation of G . The
inverse permutation is denoted by 1/2x .

3.1, Proposition. Let G(+) be a uniquely 2-divi-
sible commutative semigronp., Define a binary operation on
G by xy =1/2(x + y) . Then the groupoid G is a CIa-
groupoid,

Proof. The proposition is obvious.

If G is & CIA-groupoid and there exists a binary ope-
ration + on G such that G(+) 1is a uniguely 2-divisib-
le commutative semigroup and xy = 1/2(x + y) for all x,
Y € G, then the semigroup G(+) will be called a semigroup
representation of G . We shall denote by @ the class of
all CIA-groupoids which have & semigroup representation.

3.2. Proposition. ILet G(+#) be a semigroup represen-
tation of a CIA-groupoid G ., Then
(1) G 1is a cancellation grompoid iff G(+) is a cancel-
lation semigroup,

(i1) @ 4is a quasigroup iff G(+) is a group,

(111) the semigroup G(+) has a unit element (i.e., an
element e such that x + e = x for all x ) iff there is
an a€ G such that x+—> xa is a permutation.

Proof. We shall prove only the converse implication of
(1i1), since the rest is obvious. There exists e € G with
ea = 1/2a , Por any xe€ G, it 18 (x + e)ea ® 1/2(x + e +
+ a) = 1/2(x + 2(ea)) = 1/2(x + a) = xa , 80 that x + e =
=X,

Let us denote by $ the olass of all CIA-groupoids
which have a semigroup representation with a unit element.
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3.3, DPropositiop. A CIA-groupoid G belongs to 5
iff there is an a € G such that x+> xa 1is a permuta-
tion,.

Proof. It suffices to pat x + y = £(xy) , where

£(za) = 2 ,

Remgrk. B & Q and B &= A ., The subgroupoid
G={x|xeR, x> 03 of the quasigronp R belongs to
A\NAR . It follows from 3.2 and 3.3 that every semigroup

representation of He 5} has & unit element.

3.4. Proposition. (1) BEvery finite subdirectly irre-
dueible CIA-groupoid is contained in J3 .

(11) Bvery finite CIA-groupoid is a subgroupoid of a
finite CIA-groupoid from B .

(ii1) If c e A& (G e 3 ) and r is a normal con-
gruence of G , then G/red (ad/r e B ).

(dv) I# Ge @ (66 B ) and r is a fully inva-
riant congruence of G , then G/re @ (G/r e B ).

Proof. (1) Let G be a finite subdirectly irreducible
CIA-groupoid. If a,x,y& G then <x,y> € s, means =xa =
= ya o Obviously, s is a congruence relation for every a

a
and N g = id; + Consequently there is an a ¢ G such

aeG &
that xa = ya iff x =y , Since G 1is finite, the mapping
X +—» Xa is a permutation and we may use 3.3. »

(11) It follows from (1).

(111) Let r be a normal congruence of a CIA-groupoid
G with a semigroup representation G(+) . If < x,y)e r
then 2.(6%.2x) = 23 + 1/2x = 4%.x , 5.(62.,2y) = 4z,y and

€ 4z.x,42.3)> € * for all s e G . Since r is normsl,
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{ 2x,2y) € r . Conversely, if < 2x,2y) € r , then
{4x,4y>€ r, < 2x.4x,2ye4y 76 r , 3x = 2x.4x , 3y =
= 2y.4y 4, 3x.x = 2x , 3y, Yy =2y , 8nd 80 < xX,y> € r .
The remainder of the proof 1s clear,

(iv) Similarly,

3.5 Proposition., Non-trivial free CIA-groupoids have
no semigroup representations.

Broof. With respect to 3.4 (iii) and to the fact that
Pl is a cancellation groupoid, it suffices to show tt;at
rl ¢ Q@ ., Suppose, on the contrary, that Fl has a semi-
group representation Fy(*) . Let f(x) * f£(x) = x for
each xeF, , a= 1/2% 1/2 and b =1 - a , Clearly, a,
be L) 1/2 = aob = £fa) % £(b) and a = 1/2 % 1/2 =
= £71(1/2) = ax b . By 3.2 (1), F (%) 1s a cancellation
semigroup, Since x % a = x X b* a for every x e Fl s b
is a unit element of Fl(*) « Thus I-‘lv € B , a contradic-
tion with 3.3.

3.6, Theorem., Every CIA-groupoid is a subgroupoid of
a Cn-grouéoid with a semigroup representation,

Proof. The class C of all subgroupoids of groupoids
from Q is closed under ultraproducts. Since every groupoid
is isomorphic to an ultraproduct of its finitely generated
subgroupoids (see e.g. [2]), it is enough to prove that eve-
ry finitely generated CIA-groupoid belongs to C . In ot-
her words, we must prove that Fn/r € C for every n21
and every congruence r of Fn e A8 Pn/r is isomorphic
to a subdirect product of F /r, , P./ry ,...,F /2, (by
2.4) and C 1is closed under cartesian products and subgrou-
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poids, 1t remains to show that P /r, « C for all i e
€40,1,...,n 3, We may restrict ourselves to the case 1 = 0 ,
since the rdles of free generators are asymmetrical. The set
A= i< XyseeesXy ) | xy € R, x4 2 0% is a uniguely 2-divi-
sible commutative semigroup with respect to the usmal addi-
tion, Define a binary relation 8 on A as follows:

<xy>e s irr {27%x,27%y > ¢ r A (Hy > Hy) | for

some k .
As it ;a easy to see, s 1is a congruence of the semigroup

A and <x,y>e€ s iff < 1/2x,1/2y > € s . By 2.4, 1, =
=8N (?n’< Fn) and the factorsemigroup A/s 4is a semigroup

representation of Fn/rO .

3.7, Corollary. A groupoid G is a CIA-groupoid iff
there exists a uniquely 2-divisible commutative semigroup
S(+) suoh thet G&£ S and xy = 1/2(x + y) for all x,
yeG.,

3.8, Corollary. PFor every commutative abelian distri-
- butive groupoid G there exist & commutative semigroup
S(+) and an automorphism £ of S(+) such that GE S and
xy = £(x + y) for all x,ye G .

Proof. Apply 1.2, 1.3 and 3.7.
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