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A groupoid is called 

- commutative if it satisfies the identity ab » ba , 

- idempotent if it satisfies the identity aa » a , 

- abelian if it satisfies the identity ab.cd » ac.bd , 

- distributive if it satisfies the identities a.bc » 

» ab.ac and bo*a » ba.ca . 

For the sake of brevity, the commutative idempotent abe­

lian groupoids will be called CIA-groupoids. Clearly, every 

CIA-groupoid is distributive. 

The purpose of this paper is to describe a general met­

hod of obtaining CIA-groupoids. We shall prove that a grou­

poid G is a CIA-groupoid if and only if there exists a uni­

quely 2-divisible commutative semigroup S(+) such that 
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G £ S and xy » 1/2(x + y) for all xfy e G • Moreover, we 

shall show that in general we cannot demand the equality G * 

» S . 

ltr Some properties of distributive groupoids. Let G 

be a groupoid. A non-empty subset I £ G is an ideal if 

ab 6 I and ba e I f whenever a e I and b 6 G . In such 

a case, we can define a congruence relation r on G as 

follows: 

< xfy > 6 r iff either x « y or xfy e l . 

The corresponding factor-groupoid is denoted by G/I • 

If G is a groupoid then Id G will denote the set of 

all idempotents of G . 

1.1. Proposition. Let G be a distributive groupoid. 

Then 

(i) Id G is an ideal of G f 

(ii) a.be e Id G and ab.c e Id G for all afbfc c G • 

(iii) The mapping x.—*> x.xx » xx.x is a homomorphism of 

G onto Id G9 

(iv) G/Id G has just one idempotent. 

Proof, (i) We have x.xx » xx.xx » xx.x and (x.xx) 

(K.XX)« XX.XX » x.xx for all x £ G . Thus x.xx c Id G and 

Id G is non-empty* If a e Id G and b e G f then ab.ab » 

» aa.b • ab and ba.ba » ba • 

(ii) We can write a.be • ab.ac • (ab.e)(ab.c) » 
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« ( a a . b a ) ( a b . c ) «( (aa.b )(aa.a)) (ab .c ) . Since aa.a e Id G 

and Id G is an ideal* a.be e Id G • Similarlyf ab.c e 

6 Id G . 

(iii) and (iv) are easy. 

^•2» Proposition. The following conditions are equiva­

lent for a groupoid G : 

(i) G is distributive and Id G contains just one element. 

(ii) There is an element 0 € G such that a.O • 0 « O.a 

and a.be = 0 = ab.c for all a,b,c e G • 

Proof. The proposition is obvious from 1.1. 

Every groupoid satisfying the equivalent conditions of 

1.2 will be called a BD-groupoid. 

1.3. Proposition. Let G be a distributive groupoid. 

Then Id G is an idempotent distributive groupoid and 

G/Id G is a BD-groupoid. Moreover, G is isomorphic to a sub-

direct product of Id G and G/Id G • 

Proof. Apply 1.1 and 1.2. 

1.4. Proposition. Let f. G—-»-H be a homomorphism of 

distributive groupoida. Then f induces two homomorphisms 

gj Id G — * I d H and h: G/Id G—»H/Id H . Moreover, if f 

is infective (surjective) then both g and h are so • 

Proof. An easy work. 

A groupoid is called triabelian if every its subgroupoid 

generated by three (not necessarily different) elements is 

abelian. 

1.5. Proposition, (i) A distributive groupoid is tri-
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abelian i f f i t sat i s f ies the identity ab.ca « ac.ba • 

(ii) Every commutative distributive groupoid is triabe-

lian. 

(iii) Every distributive cancellation groupoid is tri-

abelian. 

Proof, (i) The Honly if" part of the proof is obvious. 

For the "if" part we can assume that G is idempotent (due 

to 1.3 end to the fact that every BD-groupoid is abelian). 

First suppose that afbfcfd are four elements of G sa­

tisfying ab.cd « ac.bd • Denote by S(a,b,c,d) the subgrou­

poid generated by a,b,c,d • As it is easy to see, the set 

4x1 ab.xd « ax.bd] is A subgroupoid containing a,b,c,d , and 

hence ab.xd « ax.bd for all x e S(a,b,c,d) • Quite similar­

ly we can prove that ay.xd • ax.yd for all xfy e S(a,bfofd). 

Now let afbfc e G be arbitrary elements. We are going 

to show that the subgroupoid S(afbfc) generated by afbfc 

is abelian. Since ab.cb « ac.bb and ab.cc = ac.bc , ax.yb = 

« ay.xb and ax.yc « ay.xc for all x,y e S(a,b,c) . The 

subgroupoid 4 z I ax.yz » ay.xx } contains thus the elements 

a,b,c and we get ax.yz * ay.xz for all x,y,ze S(a,b,c) . 

From the reason of symmetry, bx.yz « by.xz and cx.yz * 

• oy.xz , and consequently ux.yz « uy.xz for all ufxfyfz € 

e S(afbfc) . 

(ii) This assertion is an immediate consequence of (i). 

(iii) It is proved in 111 that every distributive qua-

sigroup generated (as a quasigroup) by three elements is abe­

lian. According to 15-U every distributive cancellation grou­

poid is a subgroupoid of a distributive quasigroup and the 
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assertion follows easily. 

Remark. The following problem seems to be open. Is eve­

ry distributive groupoid triabelian? 

A congruence r of a groupoid G is called normal if 

the factor G/r is a cancellation groupoid. A groupoid is 

called ideal-simple if it has no proper ideal. 

1.6. Proposition. The following conditions are 'equiva­

lent for a commutative distributive groupoid G : 

(i) G is ideal-simple, 

(ii) Every congruence of G is normal. 

Proof, (i) implies (ii). By 1.1f G is idempotent. Let 

r be a congruence of G , < ab,ac > e r for some afb,c € G 

and I « k x 1 < xb,xc > e r ? • As one may check easily, I is 

an ideal and therefore I • G • Thus < bb,bc > e r and 

< cbfcc > 6 r , and so < bfc > € r • 

3-7» Corollary, (i) Every ideal-simple commutative dis­

tributive groupoid is an idempotent cancellation groupoid. 

(ii) Every commutative distributive division groupoid is 

a quasigroup. 

(iii) Every congruence of a commutative distributive qu­

asigroup is normal. 

Example. Let Q be the set of all rational numbers and 

x * y » 2x - y for all xfy e Q . It is easy to check that 

Q is an abelian idempotent quasigroup with respect to # and 

the relation r f defined by < xfy >€ r iff x - y is an 

integer, is a congruence of Q(* ) • However, r is not nor­

mal, since < 1/2 * 1,0 * 1> € r • The fao tor groupoid 
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Q(# )/r is an ideal-simple distributive division groupoid 

which is not cancellative. 

Let H be a subgroupoid of a groupoid G • We say that 

a congruence s of G is an extension of a congruence r 

of H if r * s o (H x H) . 

1.8. Proposition. Let G be a subgroupoid of a dis­

tributive quasigroup Q such that G is contained in no pro­

per subquasigroup of Q . Then every normal congruence of G 

can be extended to exactly one normal congruence of Q . 

Proof. Apply Zorn's lemma for a more detailed proof, 

see C41. 

2. Congruences of free CIA-groupoids. Denote by R the 

set of all rational numbers 2~m.c , where c is an integer 

and m is a natural number. For every n £ 1 , the cartesian 

power Rn is a CIA-quasigroup with respect to the operation 

o defined by 

<a1...,an> 0 < b1,...,bn> » < 1 / 2 ^ + b-t),... 

...,l/2(an + bn) > . 

In fact (see C 33)t Rn is a free CIA-quasigroup and the ele­

ments OQ » < 0,0,...,0 > , e£ • < 1,0,...,0 > , e^ • 

» < 0,1,0,...,0 > ,..., e n » <0,...,0,1> are its genera­

tors. Let F denote the set of all < a-.,...9an> c Rn sa­

tisfying a-̂  t£ 0,...,an2L 0 and a-̂  + ... + an & 1 • Clear­

ly, P is a subgroupoid of Rn • As it is proved in L33, 

Pn is a free CIA-groupoid and the elements e», e£ £ 
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are its free generators. Further define 

-"n i • •»< aif«»»«n> e
 pn I ai * ° * for - * - • 2 f ' .n , 

pn,» " 4 < a l a n > e p n l a i + ' " + an - - * • 

% - PJJ^ P H f i for i = l,2,...,n , 

H0 « P n S Pn,* and 

Int Pn - P n N (P n > 1u P n f 2 u ... u P n > n v Fnffc) . 

It is not difficult to show that all these sets are subgrou-

poids of Pn • Moreover, Int Pn is ideal-simple and it is 

an ideal of P n • 

The following lemma is proved in 1.41 • However, the proof 

is easy. 

2.1. Lemma. Let A be a subgroupoid of P with 

Int P nS A and r be a congruence of A . If < afa -» b > e r 

for some a € A and b e Int Pn t then <afb >€ r . 

2.2. Lemma. Let r be a congruence of PR and af 

Q . Then < atb>er iff < l/2&fl/2.b>£ r . 

Proof. The direct implication is easy. To prove the 

converse, first assume that <alf...fa > * a e Int Pn • Sin­

ce <blf..tfbn> * b € HQ t bj +•••+ b ** 1 • Por every 

i * lf2f... , let 

c i » < 2 " ^ + (1 - 21-i)blf...t2""
ian + (1 - 2

1-i)bn> t 

di « < (1 -- 2-
i)blf...f(l - 2"*

i)bn> t 

p t * < (1 + 2"
i)blf...f(l + 2*

l)bn> and 

q± - < 2
1"ia1 + (1 - 2

1-i)blf...t2
1**ian + (1 - 2

1~i)bn > . 
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As it is easy to see, the following equalities hold: 

c-̂  • <l/2alt...,l/2an> » l/2a f ^ » l/2b f qx • a f 

CU1 "°i°b ' di+l " V b f °-i+l " ql° h f c i e Fn f 

p t e R
n
 f q± e Int Pn f &±o p ± » b and c ^ p^ « q1+2 . 

Since b-, +...+ bn-c 1 9 there is k2r 1 such that p^ e 

€ Pn . Then < o-^d-^ c r , < c2fd2> * rf...f <cfcfdjc>6 r , 

<Cj[e Pfctdfc* Pfc > € r , and hence ^9^+2•* ̂  6 * • Several 

applications of 2.1 (for A * Pn) give < q^^fb > € r f 

< qkfb >€ rf...f <q2tb> € r and < afb >€ r . 

In the general case we shall proceed by induction on 

n • If n « 1 then either a » b or a e Int P-̂  or b e 

e Int f^ (since W-± ^ »«fli and W^ ^ «-t0} )# Let n £ 2. 

If there exists an i € *£lf...fn? such that both a and b 

belong to -?„.,, then the induction hypothesis can be app-
n f i 

lied, since Fn ± is (oanonically) isomorphic to P a - 1 • 

If no such an i exists then a o b e Int Pn • As 

< i/2afl/2b> e r f we have < l/2afl/2a© l/2b > € r f and 

consequently < a , a o b > € r . Quite similarly < a © b,b > £ 

€ r , and so < a,b > 6 r • 

2»3. Lemma. Let r be a congruence of Pn and i e 

e iOfl,...,n} • Define a relation r^ on Pn by <a,b> € 

e r, iff < en© a fe
n* b> € r • Then r^ is a congruence 

of Pn . 

Proof. The lemma is obvious. 

2.4. Lemma. Let r be a congruence of PQ • Then 
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(i) r £ r± for all i • iOtlf...fn J t 

(ii) r± n (E±x E±) « r A (E± x H ^ for all i 6 iOflf... 

• • • f n J f 
(iii) r « r Qn rx A ... n rn . 

Proof, (i) is obvious. By 2.2t (ii) holds for i • 0 • 

Let i e i lf... fn J . Define an automorphism f of F by 

f(< x^,...,^) ) - < xlf..«txi-ltl - (x1 ••.•• x^) ti 

^^•••••xa> • »«*»iyf f - f"1 » *(*£> " e i • *<•?> • 
« e n and f ( e n ) - e n for a l l j 4 4 0 f i * • Put < a f b > e s 

i f f < f ( a ) f f ( b ) > e r • Obviously, s i s a congruence of 

Fn and sQ n (HQ x HQ) • s n (HQx HQ) . I f < a t b > € r± A 

n(E±x E±) then < e £ o a t e £ o b > e * $ < f (e£o a ) f f (e£o b)>e 

€ s t < e n o f ( a ) f e n o f ( b ) > € s f < f ( a ) f f ( b ) > e s 0 t 

< f ( a ) 5 f ( b ) > € s 0 n (HQx HQ) g s and < ' a f b > e r n 

A ^ x E±) . Thus ^ A O B ^ X Hi)SS rn(E±x E±) . 

Final ly we sha l l prove ( i i i ) . By ( i ) t r £ rQ A r^ n 

A •••J?n • I»et < a f b > € rQA r-, A . . . A r n • As one may 

oheok e a s i l y t there e x i s t two numbers j t k e « £ O f l t . . . t n } 

such that both a and a o b belong to H, and both b 

and ao b belong to Hfc . We have < a f ao b > e ( r 0 n r-̂ A 

A . . . A r n ) A ( L x H\.) S r , A ( H j x H.) « r A (Hj x B\j)fi 

S r and s imilarly < a o b . b > € rfc A (H^x H k ) s r • Thus 

< a fb > € r . 

3* Semiitroup representations of CIA-groupolds. A OOIII-

mutative semigroup G(+) i s ca l led uniquely 2 - d i v i s i b l e 
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if the mapping x i—» x + x is a permutation of G • The 

inverse permutation is denoted by l/2x • 

3«-U Proposition.. Let G(+) be a uniquely 2-divi-

sible commutative semigroup. Define a binary operation on 

G by xy • 1/2(x + y) • Then the gronpoid G ia a CIA-

grottpoid. 

Proof* The propoeition is obvioas. 

If G is e CIA-grottpoid and there exists a binary ope­

ration + on G suoh that G(+) ia a uniquely 2-divisib-

le commutative semigroup and xy * 1/2(x + y) for all x, 

y e G f then the semigroup G(+) will be called a semigroup 

representation of G • We shall denote by &• the class of 

all CIA-groupoids which have a semigroup representation. 

3.2. Proposition. Let G(4.) be a semigroup represen­

tation of a CIA-grottpoid G • Then 

(i) G ia a cancellation groupoid iff G(+) ia a cancel­

lation semigroup j> 

(ii) G ia a qaasigroap iff G(+) ia a group, 

(iii) the semigroup G(+) has a onit element (i.e., an 

element e suoh that x + e • x for all x ) iff there la 

an a € G such that x v—> xa is a permntation. 

Proof. We shall prove only the converse implication of 

(iii), since the rest ia obvious* There exists a € G with 

ea » l/2a • For any x € G , it is (x + e).a » 1/2(x + e + 

+ a) « 1/2(x + 2(ea)) » 1/2(x + a) « xa , so that x + e » 

• x . 

Let aa denote by (ft the class of all CIA-gronpoidfl 

which have a semigroup representation with a unit element. 
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3*3* Proposition. A CIA-groupoid G belongs to & 

i f f there i s an a € G such that x i—-> xa i s a permuta­

tion. 

Proof. It suffices to pat x + y • f(xy) , where 

f (sa) « 2 • 

Remark. & S & and & 4» & • The subgroupoid 

G » { x | x a R 9 x > 0 ? of the quaeigroup R belongs to 

ft- \ (8 • It follows from 3.2 and 3*3 that every semigroup 

representation of He ^ has a unit element* 

3*4. Proposition, ( i ) Every f inite sttbdireotly irre­

ducible CIA-groupoid i s contained in Ji -

( l i ) Every f inite CIA-groupoid 1B a subgroupoid of a 

f inite CIA-groupoid from CB • 

( i l l ) If 0 « d (Q e !J5 ) and r Is a normal con­

gruence of G , then G/r e & (G/r e 33 ) • 

(Iv) If G € 0/ (G s 3 ) and r i s a fully inva­

riant congruence of G , then G/r 6 CI (G/r e 3 ) . 

Proof. (1) Let G be a f ini te sabdirectly irreducible 

CIA-groapoid. If e,x,y s G then < x,y > € sft means xa » 

» ya • Obviously, sft i s a congruence relation for every a 

and f~\ B0 » idn • Consequently there Is an a € G such 
a, e (S* • w 

that xa « ya iff x « y .Since G is finite, the mapping 

x v—• xa Is a permutation and we may ase 3.3. 

(11) It follows from (1). 

(ill) Let r be a normal congruence of a CIA-groupoid 

G with a semigroup representation G(+) . If < x,y > e r 

then z.(6s.2x) • 2s + l/2x « 4z.x , z.(6z.2y) » 4z.y and 

< 4z.x,4z.y ) c r for all s 6 G . Sinoe r Is normal, 
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< 2x,2y> e r • Conversely, if < 2xf2y > € r f then 

< 4xf4y > e r f < 2x.4xf2y.4y > € r f 3x • 2x.4x f 3y -

• 2y.4y 9 3x.x • 2x f 3y.y • 2y f and so < xfy > € r . 

The remainder of the proof is clear. 

(iv) Similarly. 

3.5. Proposition. Hon-trivial free CIA-groupoids have 

no semigroup representations. 

Proof. With respect to 3.4 (iii) and to the fact that 

P.i Is a cancellation groupoid, it suffices to show that 

P.. e£ CL # Suppose, on the contrary, that P-, has a semi­

group representation F* (* ) • Let f (x) * f (x) «- x for 

each x e F1 f a « 1/2 # 1/2 and b » 1 - a . Clearly, a, 

b e Px f 1/2 » a o b » fXa) * f(b) and a • 1/2 * 1/2 « 

« f ^ Q / a ) « a * b . By 3.2 (i)f P-^*) is a cancellation 

semigroup. Since x # a » x * b * a for every x e F^ f b 

is a unit element of P-L(>K ) . Thus F-, e 3 f a contradic­

tion with 3.3. 

3.6. Theorem. Every CIA-groupold is a subgroupold of 

a CIA-groupoid with a semigroup representation. 

Proof. The class C of all subgroupoids of groupoids 

from CU 1B closed under ultraproducts. Since every groupold 

is Isomorphic to an ultraproduct of its finitely generated 

subgroupoids (see e.g. t23)f it is enough to prove that eve­

ry finitely generated CIA-groupoid belongs to C .In ot­

her words, we must prove that Pn/r m C for every n > 1 

and every congruence r of Pn . As P^/r is isomorphic 

to a eubdirect product of -?n/*0 » *x/
rl •••••'n^'n ^ y 

2.4) and C is closed under cartesian products and subgrou-
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poidef It remaine to show that *n/*i € C *©* a11 * e 

€ 40flf...fn3 . We may restrict oar selves to the case i • 0 , 

since the roles of tree generators are symmetrical. The set 

A » {< xlf...fxn> j Xj 6 Rf x* 2 0 } is a uniquely 2~divi-

sible commutative semigroup with respect to the usual addi­

tion. Define a binary relation s on A as follows: 

< xfy > 6 0 iff < 2*kxf2~
ky > € r n (H0 x HQ) % for 

some k • 

Ae it is easy to see, 0 is a congruence of the semigroup 

A and <xfy > 6 e iff < l/2x,l/2y > e 0 . By 2.4f rQ « 

« s n (Fnx Fn) and the fact or semigroup A/o io a semigroup 

representation of Fn/r0 • 

3*7. Corollary. A groupoid G is a CIA-groupoid iff 

there exist0 a uniquely 2-divisible commutative semigroup 

S(+) such that G £ S and xy » 1/2 (x + y) for all xf 

y € G . 

3»8. Corollary. For every commutative abelian distri­

butive groupoid G there exist a commutative semigroup 

S(+) and an automorphism f of S(+) such that G £ S and 

xy • f(x + y) for all xfy 0 G . 

Proof. Apply 1.2, 1.3 and 3.7. 
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