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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

16,3 (1975)

CONVERGERCE OF A DUAL FINITE ELEMENT METHOD IN Rn

J. HASLINGER, I, HLAVACEK, Praha

Abstract: Using the dual variational formulation of the
elliptic second order problems, the question arises to con-
struct suitable subspaces of admissible vector-funcions in
Rn « In the paper a possible system of piecewise linear func-

tions is shown and the rate of convergence 0(h2) proved,
provided the exact solution is sufficiently regular.

Key wgfgg: Finite elements, dual variational formula-
tion, equ rium models, ’

AMS: 65N30 Ref. %.: 8.33

1, Introduction., Let Q2 c R, be a bounded domain
with Lipschitz boundary (ef. [21), k Z 0 integer. By
wk’z(xz) we denote the set of real functions, which are squa-
re-integrable together with their generalized derivatives up
to the order k , ¥'2(Q) = L,(2) , [W%(Q)1P .

=wE2(0 )= ... = W2(Q) with the norm
m-times

2 )1/2 ,

] I Vom (VygeeesV, )
uv“k'_n = (L§4 "vi k.-ﬂ- 1 m

where
«© 2 1/2
Moy lic,0 = ([ﬁ SRR AC T DR

Let Gk(ji) denote the space of continuous functions, the de-

rivatives of which up to the order k are also continuous
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and continuously extendible onto S ’

LR (@)1 ™ €8T ) x veux K(A) ,
m-times
with th_e norm

“vﬂ[cu(m]m= max (mﬁx.«o (xrzaxn [ D¥wy(x) 1))

Amdyeeym
Let McR . We denote by Pk(M) the space of all polynomials
in n-variables of the order at most k with the domain M .
Let us consider the differential operator

Au=- g‘ ) au)

L3 Bw M43 T

satisfying the following conditions:
(1.1) a4 € L, (), an(x) = aji(x) v 1,j * Vxell
(1,2) 3« = const.> 0,

2
‘,"25.4 aij(x) s EI" 2 ol g I VEeR,
almost everywhere in QO .

Let the boundary I' consist of three disjoint parts T,
I"Q, sy R such that T, dsopenin I' , T % ¢, mesn_lﬁ«-
=0, I"g, either empty or open in I' and

I =T, v I‘g_u R .

We shall solve the following problem:

A us t m -Q Y
: us=u on T, ,
(3 MG MmE o T

where fe L,(Q) ,ue wh3(q) s BE€ Lz(r‘?) are assigned,
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n; are components of the unit outward normal to T .

We set:

Vad{v|ve w2(a), v=0 on T, 1.

A function ue Wl'a(.()_) will be called weak soiution of the
problem (1,3), if

M
where
1 it dv v
Lv) = = |, —— dx - | fvdx - gv ar.
2 _~£_m,§.‘=1 i a.x“-’ axq-’ ‘.[n. "[‘qf

He=[L,(@)N™ ,

m
A= = Lﬂ:dx v A= (Agaeeesdp)

we define the bilinear form
~
(a'f")ﬂ'&,ﬁqj_;lbij Ag @y dx, VA, @ e H,

where bij are the entries of the matrix [ a~t]l inverse to
(al .
Obviously, positive constants C3s Cp exist such that

o IAN < AN <o, il ,

where .
Tal, = (A, 20, .

Moreover, we introduce
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i o
Ayv) = Fy agy

4 —a—x-;' ] 1(V) = (\?Li(v),...,.ﬁ.n(v)),
A'f,g -{ﬂ"ﬂ € H, B(A,v) = f‘a £ v dx +j;‘ gvdl, Yve v}
g
where
i B
B(A,V) = »'\.gﬂ Inzi.a; dx .

Theorem 1,1 (The minimum of complementary energy). Let
u be a weak solution of the problem (1.3). Then the functio~-

nal
170 = N _
3‘“'3&%« byy Ay Ay dx - B(A,D

attains its minimum on the set A"»? o 1f and only if A =
= Ay .

Por the proof we refer to [1].

We have a variational problem of a minimum of a quadratic
functional on a closed convex set Af.,g c H , As usual, the
problem can be interved to a similar one, but on a linear space
subspace AO,O = H,c H, In fact, we may write

Af -z’{-Ao’o ’

where A 1is any fixed element of Af.s .

It is easy to show that the equivalent problem is to find
%’ € H, such that

(1.4) (2°) = min & (7)
$ (% 24, % (1
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where
1
é(n)--z(Q,x)H- F(x) ,
m -
Pan= - Lty By nadn- 300, 2)

Let he (0,1> and let {V,} be a aystem of finite-di-
mensional subspaces of Hz « We define the following procedu-

res
to find %7 €V,  such that

®(715) = m“’@(ag) .

(1.5)

Theorem 1,2, To every h € (0,1) there exists precise-

ly one 7(,:“3 V,, satisfying (1.5) and it holds

/] . 0 . I
(1.6) Ny°- 23y & xﬁﬁﬁg -zl &C, 72?53‘." x°-2 1 .

The proof can be found in (11 .,

1
2, (Congtruction of subspaces V, . Let X ={a.43?:4 be
the set of (n + 1) points in R, , (nZ 2) such that their

coordinates ay = (ali""’ani) form a regular matrix

~ 9

511.... an_,... aln+1

321'00. 321,... 32n+1

anlpo-o ani"" Bnn+1
1 goee 1 9 oo 1

The closed convex hull of = will be called n-gimplex
K in R, , 8a; @ & its yerticeg and we write
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K =conv 3, .

The assumption on the matrix A yields that the system
m+1

Xy o= Zg 83 A5,

m+1
ls= ‘}%1 AJ(I)
has a unique solution A (x) = (.ﬂ.l(x)..... Anﬂ(x)) for
any point xe R, . The components Zi(x) will be called
barycentric coordinategs of the point =x with respect to the
vertices ByrecesBp g o Thus the n-simplex K can be charac-
terized by means of the barycentric coordinates:
xe€e Ke=»0 & ﬂ.i(x)él i=140eeyn + 1

m+A

M =1

By (n - 1)-dimensional gide of K we call the closed convex
hull of an arbitrary n-tuple of points of ¥, . Consequently,
the total number of (n - 1)-dimensional sides of K equals

(ﬂ:‘d ) =n+ 1.,
Each vertex ay belongs to n sides of K .
It is well known that the set 5. is P,(K)-unisolvent, i.e.

for any K yreeey Kpiq € Rl there exists precisely one poly-

nomial p 6 1’1(K) such that p(ai) =axy, 1=1.em+1.
Let V. {313;’3:'1 , where aij € = . Then Sy =

= conv 5\* 4s a (n - 1)-dimensional side of K .
We define a mepping Ty e £ (LW '2(K)1™, 1,(5,)) by
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the relation

T.va=vl n(ing v
i 8 ° =133
of

1) 4

where v'81 denotes the trace v on S; and n

the unit outward normal to Si .

Lemma 2 Let 'x;_”

be (n +1)n real numbers (i =
= lyeeeyn +1 and J = 1,..., n) « Then there exists a uni-
que v e [ Py(K) 1™ such that
(2.1) Tv(a, ) = Y =*
. iV 81 = ’)’a' » ai c .
3 J
Proof, Let a; € =, be a vertex of the simplex K ,

and 811' 812,....Sin the (n - l)=-dimensional sides of K ,

containing a; . We choose the equations from (2.1), concern-
ing the vertex ay only:
“3) “3)
(2-2) V(ai) e # = ’3’4" 4
(suppose that ay representa the i-th element in every
S% ), As the vectors 1 ‘e sy J=1y0.0,n are linearly in-
-dependent, there exists a unique solution v(ay) = (vy(ag)yeee
eess Vp(ay)) o Prom the P,(K)-unisolvability of S it fol-
ows the existence of unique polynomialav vje Pl(K) s COrres-

ponding to the values {vd(ai)}r:: e J = 1yeeeyn &

Let S; be a (n - 1)-~dimensional side of K . We say

“
that -7L1’,.... a“" are the bagic functions of the side S,
i ) ‘
1° a;s P(Sy)y 3 = Leeauyn
20 1“)

j (aik) = d’ék [ aike 21’ .
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Prom the Pl(si)-unisolvability of every set 2':’ and
from the definition of Jt(,;, it follows:

noo )
(203) é-§4 2’3" =1 on Si .

An easy calculation leads to the relation
L5
sy ¥

Consequently, using also (2.3) we derive that

s = [ a%as V 3k = 1yeee,n o
5:

<)

Z ¢
mes, _,(5;) = fs-&( ég‘i A,chu)ds =n . J's“: Ay° ds,

0) A
(2.4) js.l(; 4ds = —”; meen_l(si) y 3= lyecegn o
v
Henceforth we denote
£ = £ gads
(t,e) = [, .6

for any f, g € Lz(Si) .

eo 2 Let v e [\VI'Z(K)]M’. Then the equations
& L) L : 4)
(%) ST, xg (Mg, A = aw A ),
(1) ()
(*x% n V(‘:I.k) Y

<
for i = 1,:.., n+l; k= lyseeyn .1k3 2

define a mapping M & £ (L1 2@®)I™, [P, ()1™n

n L (Lem 1™, L2 ()1™)

Proof. The numbers cr.:') are uniquely determined by
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(%), because the matrix (Gramm s) A; with entries

) ¢) ) '

Uydgy = (A5, ALY, 8y 1= 12000em
is regular. Solving the system (» ) we obtain altogether
(n +1) . n parameters ac“:" . Lemma 2,1 yields the exis-

tence and uniqueness of a vector ¢ € [ Pl(K)lﬂ, for which

)
Tig (aij) = xé .

We set v = ¢ , Obviously, the mapping I is linear, Let
m;n and oc(,a_-‘”) be the solution of (% ) with the right hand si-
des (Tyv,, %k“"’) and (T,v, ak“") , respectively, (k =
=1,0.0,n) end let v ,—» v in Cwle2(X)I™ ., From the theo-

rem of traces (see [2]) and the Crammer s rule

(<) (<)
m - co “%f"' - oc?

follows. The rest of the proof is obvious.

Consequently, there exists a constent ¢ > 0 such that

I ﬂvl\c(m € c “VHCCK) .

The magnitude of ¢ will be estimated in the following

Theorem 2,2 Let us define Tl by (% ) and (% %), Then

c
. £ 0 Il
I Mar "C(K) S onim Loat (T, mOng War g ey

where L is an absolute constant and the minimum is taksamn
over the set of all n + 1 n-tuples of numbers (11,...,111) N
chosen from the set {1,,..,n +1%.

Proof. ILet [ represent the reference n-simplex in

Rn ’ with the vertices (0,....0). (1.0..-.,0). ceey (o.cvo
"‘11) .

- 477 -



Let F(X) = BX + b be a regular affine mapping, of K onto
K (see [3]). Then S, = P(S) , where S 1sa (n- 1)-dimen-
sional side of ﬁ + Using the integral mean value theorem we
obtain

fa "4 as = 7, fn“" ya)d8 =

"

3. z“’u;?). “"cgh) . mes (8) =

i}

ﬁ;‘v’(gév A& (EE) mes s

(), A [23) A A A al A
where 1é(x)- ﬁé (F X¥),xe8S, g;e s andAJ-
= const > 0 1s the Jacobian of the transformation S &> Si .
Hence
<) (5]
ca ’% ) = ogy mes (S;),

with a constant °;(]k) independent of 8y . Consequently,

det Ay = 3..‘_(1119,9(81))n R ’c'i £0,

where Ei is a linear combination of product of ogt) .
Uging the Crammer ‘s rule and a similar estimate of the

determinant in the numerator, we are led to the estimate

(2]

(2,5) loo. [ £ c, lvl

Ky

where Sy is an absolute constant. Solving the system (%)
we get 1 v(ay) = (@q(a3)yeeey qn(ai)) . Using again the

Crammer '8 rule and (2.5), we obtain
Co
mim € ldet (m?,..., m“*nI13

where S, is an absolute constant and the denomimator is de-~

fined in the Theorem. As [ v=¢ € [P;(K))™ , the asser-
tion follows immediately from the last inequality.

larll

|qa(®4‘)l = CKy ?
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Let us denote
ME) =iv = (vg,000pv ) € [P1(K)1™ , ddv v =0},
It is readily seen that dim M(K) = (n +1) o n -1,

Lemmg 2,2 veMEN=v e [B(K)I&

& v.ndS=0,
oK

Proof., Let v e EPI(K)]’"' o Then div ve P (K) and
Ay v = 0= [ divvdx =0,
K

Hence the Green’s theorem

f;divvdx-_f;‘v.nds

yields the assertion.

Lemms 2,3 veM (K)e=>vV ¢ [PI(K)]” &
a+t1 m

(<)
&z§1 E‘:’i @ “'mes(s;) =m0,

where ar,:) =T ‘(’1k)' aike =" .

Proof. Ve have

meA : m . :
- - (€) 54 |
}‘DK' - » 43 £§4 fs‘.' Tyvas o Iqv hgq “a 'a'h

Using also (2.4), we may write

nel1 =

IaKv .ndS = -;’; 54 %-1 o&‘i’ mes(S,) ,

and the assertion follows from Lemma 2,2,
Let us define

V(K) ={v e [V2(K)I™ , dtvv a0},
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Theorem 2,3 Let the mapping [T be defined by (%)
and (k*). Then

Ne £(V(K), MEK),
(2.6) Nvav Vve [B®I™.

Proof. Adding the equations (%) for k = 1,...,n we
get

AN EA) o, D )
(fr‘._ar,h% Ag V= By (A » g Mo )

From (2.3) and (2.4) it follows

D), () 1 & @
fs"'/T;‘v oLS-é§14 ®y (A , M = -~ %14 o« mes (S.) .
If v e V(K) , then we have
A m+1 m .
0=( v.m =" [ T,rdS=s - = 5 % mes(8,).
5K +=1 s‘i jad m 4=13=1 v

4s “‘?)’ N ‘(313) y 8; € = ¢ , Lemma 2,3 yields
J

Mv e M(K) ., The assertion (2.6) 1s an immediate consequen-

ce of Lemma 2,1, because for Vv € EPl(K) ™

oc;:’) =Ty v(aik)z v(aik) . n(1) .

Theorem 2,4 1Let v € L[ C>(K)1™ and h = diam K , Then

() 2
(207) “'U'— ﬂrvﬂc(K) & {] ot (m“"")’.,,’ nm“"ﬂ’)]?h ””"CQ(K)

where ¢ 1is an absolute constant and the denominator was de-
fined in Theorem 2.2,

Proof. Let X, € K be an arbitrary fixed point., Using the

Taylor ‘s theorem we obtain
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(2.8)  v(x) = v(x,) + Dv(x,)(x = x;) + D% (8)(x - x,)? ,

with O e X X . Applying [1 to (2.8), using its linearity

and (2.6), we derive
Mvix) = v(x) + Dv(x)x=-x) + N D(O)x - x)?) .
Hence we may write
Ny =Mvlggy & 1% (0)(x - x)2H o gy +
+ 1A D% (8)(x - x )N gy

The estimate (2.7) follows from Theorem 2,2 and Il x - xoll £

£h .

Remark 2,1 For n = 2 we have

3 3 { «,)
ldet(n“‘”, n“"))l w10 n 2 sin o, ,
“ .
where x4 is the angle between vectors n 1) ’ n“‘ﬂ . Hence
¢ 2
L m———
Nar = O lly o & ot ol ey o

where o 1s the minimal angle of the triangle K ,
For n = 3 there holds

) (4,)  (£,) { (t,) <,)
|det(n 1 ,n 2 ,n")l::ln“"). n 2 xn N,

which equals the volume of the parallelepiped, being deterﬁi—
ned by the three (unit) vectors ncq:") . n“” and na” .
Let us consider a bounded polyhedral domain L c Rn .
Let h be a parameter, h e (0.1 > , C["% a finite division
of &L , satisfying the usual conditions concerning the mutu-

al position of any couple of n-simplexes K, K'e Ji , h =
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= pax (diam K) .
Ke %,

Let K and K’ have a common (n - 1)-dimensional side
S;, ve Lwl*2(2)2™ . Denote

i 1
!1"""31’“’(‘)' ’1.x""'si-°:(c') ’

where néi) and n,({}) s 18 the unit outward normal with res-
pect to K and K’ , respectively, at g point =x ¢ 8i .

We say that the oondition (R) is satisfied on S, , if
(209) Ti’xv + Ti’xl' = 0 on Si [

Denote

V(Q) =4v 6 C¥2(0)1™, aivv =03,
'nh(.ﬂ.) -{v,le e M), VK e ), and
(R) 1s satisfied on every common side in T 3.
1,2 g

Let us define a mapping r, of [W''°(R)]" as follows:

(2.10) o orvlg=Ngy VK e Ty

where ﬂx has been defined in Theorem 2.1 through (> ) and
(xx) on every K € T, .

We say that a family of division 43,3 , he (0,17 is
regular, if a constant o, > O exists such that for every
K & fh and any h e (0,1>

: <,
(2.11) min {|det (nK“"),..., ng V1% x, ,
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the minimum being defined in Theorem 2,2,
The condition (2,11) implies for n =2 apnd n= 3
that the corresponding angles and volumes, respectively, can-

not converge to zero with h — O (see Remark 2.1).

Theorem 2,5 Let 4 Tj.‘!. h € (0,1) be a regular fami-
1y of division. Define the mapping T, as in (2.10). Then

(2.12) r, ¢ £ (V(R), Ny(0)) ,

2
(2.13) lv -z (] 0,,0.‘ och“ v uOZ(ﬁ) .

Proof. Prom Theorem 2.3 it follows
rhle e M(E) Vve V), VK e Th .

Hence it suffices to verify the condition (R) on every common
(n - 1)-dimensional side S; in Tb o As Ti,x‘( n ') and
P, (M _,v) belong to P,(8,) , it suffices to verify that
i,K K 171

Ti,x( n xv)(aij) + ti,x’( n K/") (aij) =0 v 813 [ ]

Thig follows fram (* ), (%k*), because néi) = - né;") » and

therefore

(22
Ti,K( n K')(ai") = “1'1’
Ti.x'( nK")(.ij) - - &;‘a) .

The estimate (2.13) can be obtained in a usual way:
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2

2 4
v~ Ny "o,K & ch “v"cﬁu'iJ -

2
v = rpv “0,_(1 = K%ﬂjv

where (2.,7) and (2.11) have been employed.

Remark 2,2 Any v € 'TLh(_Q.) satisfies the equation
div v = 0 in the sense of distributions.

In fact, let < € & (L) (i.e., an infinitely diffe-
rentiable function with compact support)., Then

(divv,9> =~< v, gradgy) =

=K‘2% f; ga.divvdx-x‘fa_h

because div v = O in every K € O'h and the condition (R)

-K.z% fK v . grady dx =

TV o ds = 0
J;KK ¥ ’

is satisfied on every interelement boundary &K N 3 K/ =

= 54 + We say that U"h is congigtent with 1"g , if the fol-
lowing condition holds: if a part of Y‘s belongs to a side

Sy ofa K e O"h s then I"g covers the whole side Sy

It is easy to verify by a similar way that
Vh- ’Ylh(_n_)ﬂ AO,O' {Al 2 e 'rzh(n),x. n=0on l"gi

defines the subspace V, of H, , Then Theorems 1.2 and
(2.13) lead to the following

Theorem 2,7 Let the solution %° of (1.4) belong to
c?(1) eand i{Tpt, b e (0,17 be a regular family of divi-
gions consistent with 1"8 « Then

hy® - gplpn = 0w, n—>0

where y5 1s the solution of (1.5).

e 2 The principle of complementary energy (Theo-
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rem 1l.1) can be extended to the mixed boundary-valued problem
including the Newton s condition (see [1] = Appendix). The sa-
me subspaces 7lh(Jl) are applicable and an analogue of Theo.

rem 2,7 holds.

Remark 2,4 As V, belong to J\o’o = H, , the dual met-
hod described above can be used to get (1) a posteriori error
estimates and (ii) the solutions by the method of hypercircle
(ef. [11).
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