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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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GENERALIZED POINTWISE SYMMETRIC SPACES
0ld¥ich KOWALSKI, Praha

Abstract: In this paper we give an example of a Rie=-
mannian s-manifold (with a discontinuous s-structure)
which does not admit any regular s-structure in the sense
of A.J., Ledger (x).

Kef words: Homogeneous manifolds, BRiemannian manifolds
symmetric spaces. ’ ’

AMS: 53C30, 53C35 Ref. Z. 3.933.312

1., Introduction. Let (M,g) be a differentiable Rie-
mannian manifold. An isometry 8 of (M,g) for which =xe
€ M is an isolated fixed point is called a_symmetry of M
at x , (I7T1). An s-structure on (M,g) is a family i8,:

: xe M} of symmetries of (M,g) (one symmetry at each
point). Here the map s: M—> I(M) need not be even conti-
nuous. According to a theorem by P, Brickel, if (M,g) ad-
mits an s-structure, then the group I(M) of isometries is
transitive (L7]), and thus M is a homogeneous Riemannian
manifold,

An  s-structure isx} is called regular if for every
two points x, ye M

(x) I wish to thank to A.W, Deicke, who provided the basic
"model”, and also to A, Gray and H, Samelson, who kind-
ly answered my questions concerning the transformation
groups on spheres.
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8y0 8y = 8,08, , z= 8.(y) (ce. [33).

It {ax} is regular, then the map s8: M—> I(M) is always
differentiable (cf. [51, Theorem 1).

An s-structure {s 3 1is called of order k if (ex)k=
= identity for all xe M , and k 1is the least integer of
this property. Following A,W, Deicke, if (M,g) admits an
s=-gtructure, then it always admits an s-structure of finite
order. Further, if (M,g) admits a regular s-structure then
(M,g) admits a regular s-structure of finite order. (C£.[5),

Lemma 3 and Theorem 2),.

A generalized symmetric Riemannisn space is a Riemannian
manifold (M,g) admitting a regular s-structure (cf [51),

Now, we shall introduce a more general

Definition. A _generalized pointwise symmetric Riemanni-
an_space is a Riemannian manifold (M,g) admitting an s-

structure,

Order of a generalized symmetric (or generalized point-
wige symmetric) Riemannian space (M,g) 1is the minimum order
of a regular s-structure on (M,g) (or the minimum order of
an s-structure on (M,g) , respectively).

It is easy to show that a generalized pointwise symmet-
ric Riemannian space of order 2 is a usual Riemannian (glo-
baliy) symmetric space. Moreover, the canonical s-structure
consisting of geodesic symmetries is always regular (see [31),
Thus, for order 2, the concepts "pointwise symmetric" and
"gymmetric" are equivalent,

The existence of generalized symmetric Riemannian spa-
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ces of order greater than two is shown in [7], and many ex-
amples of such spaces (of orders 3, 4 and 6) are given in
[4) and (6],

The purpose of this paper is to present a family of ge-
neralized pointwise symmetric Riemannian spaces which are pot
generalized symmetric. This example seems to be non-trivial
ag it uses the ciassification of compact connected Lig groups
acting transitively and effectively on spheres, due to D,

Montgomery, H. Samelson and A. Borel,

2, The main theorem. Consider the Hermitean manifold
2n+l 1 n+l
(c [z, ]

» 85 ) with the metric

seey2
2m+1 - 2ma4 1 - 2+ 1 _

g = .= azt azt + 2 (=7 2t azl) ¢ =778 az9)  where
az1 Az 3=1

A0, A>-1 1is a constant, Let us consider the sphere

4n+1 a1 4 _4

s+l Gefined by ;g,, z2° % =1, and the real Riemannian

metric 37‘ on S‘m'"1 induced by g, .« (Here the real coor-

dinates are introduced putting z:i = :c"j + :Lya s 3= 1yeee

ecey 2n + 1 o)

Theorem. For n Z 2 , the Riemannian manifold

(S4n+1, E?\.) is generalized pointwise symmetric of order 4
but it is not generalized symmetric.

Proof. Let us define the origin of S4n+1 to be the

point 0 = (0,...,0,1) of C°™1 | Phe transformation of

02n+1 (221-1)' = - =21 . (221)’ = 221-1 (i = 1,...

given by z

z2ntly s  g2n+l , induces a transformation 3'0 of

S4n+1 with a fixed point o , Clearly, ’é’o is an isometry

of (S4n+1, /g\h) . We can see easily that the tangent map

eeesn) 4 (
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(:o) 0 has no nonzero fixed vectors in the tangent space

(S4n+1)° , and hence o 1is an isolated fixed point of ;o .
Moreover, we have (?o)‘ = identity. '

The group U(2n + 1) of all unitary transformations of
c2m*1  (with respect to its natural structure of a linear Her-
mitean space) preserves the metric 8y and 1t acts transiti-
vely and effectively on s4n+l « Thus U(2n + 1) can be con=-
gidered as a group of isometries of the Riemannian manifold
(sén+1. gz ) .

Define an isometry 8, of (shm+l £a) for every x e

6 S47*1  gg follows: let Ae U(2n + 1) be such that A(0) =
= x , and put 3'x - Aogo a1, (The transformation i’x de-
pends, in general, on the choice of A ), Then x 4is an iso-
lated fixed point of 'E'x . Thus (s40+1, 'g\,,) is a generali-
zed pointwise symmetric space. (This example was pointed out

by A.W, Deicke.)

Let us remark that (S4n+1, E,_) is not locelly symmet-
ric and it 1is of odd dimension. Thus, the order of the space
cannot be 2 or 3 and hence k = 4 ,

We shall now prove the second part of the Theorem. In the
following, SO(4n + 2), U(2n + 1) and SU(2n + 1) will al-
ways denote the transformation groups of S4’“'1 which are in-

duged by the corresponding transformation groups of the gi-

ven real space RY2 gna of the complex space gentl |
Lemma. Let K be ect o ometrie

(S4n+1, ?") gcting transitively on ghn+l | Then
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K28U(2n +1) .,

Proof. According to Montgomery - Samelson [8], and Bo-
rel [1),(2], each compact conneoted Lie transformation group
acting transitively on S%"*1 15 isomorphic to ome of the
following groups: S0(4n + 2), U(2n + 1) , SU(2n + 1) . Let
G be the component of unity of the full isometry group
I(S4n+1, Ea) , then G2U(2n + 1) . G camnot be isomorp=-
hic to SO(4n + 2) ; otherwise g, would be a metric of
constant curvature. Thus G = U(2n + 1) .

Let K be an arbitrary connected and transitive group
of isometries of (S"n*l, E,’) s then K= U(2n+1) , If K
is isomorphic to U(2n + 1) , then K = U(2n + 1) and Lemma
is proved. Let now K be isomorphic to SU(2n + 1) . Then the
Iie algebra k 1is isomorphic to su(2n + 1) , and
ke u(2n + 1) . On the other hand, we have u(2n + 1) =
= gu(2n + 1) @ R (direct sum), and the subalgebra
su(2n + 1) 4is simple. Hence it follows k = su(2n + 1) , and
consequently, K = SU(2n + 1) , This completes the proof.

4n+l, o
Let now {sx} be a regular s-structure on (S ' ga),
and let K denote the component of unity of the automorphism

(s4n‘|'];

group of the Riemannian s-manifold ﬁl,{sx!) . (Here,

by automorphisms we mean isometries A € G such that A 8y

= 8)(5)° A for all x e M ,) According to [3], Theorem 5.6,
K 1is a closed subgroup of G acting transitively on M ,
Acoording to the Lemma, K 2 SU(2n + 1) . Por the stability
group K, of K at the origin o we have K, 2 SU(2n) (=
= the subgroup of SU(2n + 1) 1leaving all points (0,...
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vee0,063%) of S4P*1 £37ed), The transformation s, commu-
tes with each element of Ko and particularly, it commutes
with each element of SU(2n) .

Consider the tangent space (S4n+1)o . It 15 generated

by the vectors

o ]
01 -(m)o 0 fj = 5;—;—)0 sy Where i =1,...,2n, J =1,...

eesy 20 + 1,
Here fone1 is orthogonal to the 4n-dimensional subspace V
generated by ey , £; for 1= 1l,..., 2n.

Let H denote the real isotropy representation of
SU(2n) 1n the tangent space (S*™*1) , and S, = (8,,), .
All linear transformations h e H , and also So » are ortho-
gonal transformations of (84"""1)o with respect to the scalar
product (Ez)° « H acts transitively on the subspace V ,
and all fixed vectors with respect to H are of the form
Xfpn.1 » S, commutes with each he H and hence S (f5, ;)
is a fixed vector with respect to H . Thus S, (£, .,) =
- t2n+1 , and s;nce So does not admit non-zero fixed vec-

tors, so(f2n+1) = - f5.,1 ¢ Also, the subspace V 1is invari-
ant with respect to So .

Let h denote the Lie algebra of H . Por every pair
(ry8) y 1< r+ 8 & 2n, consider the endomorphisms B, ,

Crg ® B defined as follows:

B (£

Bpgley) = 6g » Bpglfy) = £, 4 Bygley) = = e,y Byglfy) = =~ £,

r

Crafep) = = £, Cpp(f,) = ey, C (o) = -2, ,C (L) =c,,
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Bog(e;) = By (£y) = Coo(e;) = Cpp(f,) =0,  14r,8.

Let S ° satisfy
2m

so(°1) = %‘2-'.1 li oy + bi rj

am i= 110-., 2n .,
8,(fy) = 5%4 ci oy + di £y

Prom the relations (B, e S;)(e;) = (Sye B, )(ey)
i r, 8
(Bpg® 85)(fy) = (350 B, )(2y)

we get .i = bi = oi = di = 0, for all i, 3 such that 1<
ai%) . (Por this step, the inequality n>1 'is decisive.)
From the relations

(Bpg® Sy)(e) = (g0 Byy)(e,)

(BLg® S,)(fy) = (Sge B.)(£,)
we get

a:-az.b:-b:,oiuc:,d;-d: 14 r, 84 2n,

Pinally, from the relation
(Crg® 8,)(ey) = (5S¢ Cpg)(ey) we get
a:-dgna, bi--c:-b, l€r, 82y ,

We have obtained
So("j) =ae + bfj
1€ j&2n,
2
So(fj) = - bed + afd a” + b =1 .
so(f2n+1) == fone o

In the complex form,

3 ) 1
SofC 5= )o) = (M550 3 =1,ei2m, o a s bt
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Sofans1) = = fopyy o
Now, let us denote by ZyseeesZ2n4l the complex vector

fields on g4+l Ghich are tangent components of the vector

Cl

s SoEme respectively. Iet V, R  denote

ield ®
fields 527 5 soe

the Riemannian connection and the curvature tensor fileld of the

metric {;‘a respectively. After a long but routine calculation
we derive
(v22R)° (Zl,Zl,ZZn+1,Za) * 0 ’ 1.8.)
(v L 9 2
:zz R)o(( 327 dos ! o5 7 )o' f2n+1'( P52 )0)4: 0.
(VR), being invariant with respect to S, » we come to & con~
tradiction,

Remark. For n = 1 , the Riemannian manifold (85,23)
is generalized symmetric of order 4 (cf. [6]1) .
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