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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

16,2 (1975)

EXISTENCE THEOREMS FOR A VARIANT OF HAMMERSTEIN S INTEGRAL
EQUATION

M. JOSHI, Pilani

Aygtgggt:, Existence theorems are obtained for a variant
of Hammerstein s integral equation of the type

ule) + [, k(s,t) £(t,u(t), Bu(t))at =0 where B 1is a bounded
linear operator from a closed subspace of P to I.-q(1 +—-=1) ,
The kernel K is assumed to be such that the linear integral
operator A given by Au(s) = L)_K(s,t) u(t)dt 1is compact

and angle-bounded. The function f satisfies the usual Nemyt-
skii type conditions and the condition uf(t,u,v)

2z clul“Ivi® , —:;' +-:—; =1 for sufficiently large u and all v .

Egz wordg: Hammerstein equation, angle-bounded operator
Caratheodory conditions. ’ !

AMS: 4TH15 Ref. Z.: 7.978.5
l. Introduction. A nonlinear integral equation of Hammer-

stein type is of the form

(1) u(s) + fn K(s, t)£(t, ult))at =0 .

Usually one assumes that £l is a meadurable subset of R2 ’
£(t,u) 4s a function or. the variables t ¢ L , ue R satis-
fying the so-called Carathéodory conditions i.e. f(t,u) is
continuous with respect to u for almost all t e L and mea-

surable with respect to t for all values of u . There is an
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extensive literature on Hammerstein equations with contribu-
tions by Hammerstein [7], Iglish [8), Golomb [6), Dolph (4],
Rothe [17), Vainberg [18)], Krasnoselskii [13) and others. In
recent years monotonicity concepts have lead to the detailed
study of a more abstract Hammerstein type equation by many

authors which include Kachurovsky [9], Vainberg [18], Dolph—
Minty [5), Kolodner [10], Brézis [2), Kolomy [11], Amann[1]
and Browder-Gupta [3). The abstract form of Hammerstein’s

equation 1s

(2) u+ KNu=0

where K 1s a linear mapping and N a nonlinear mapping. In
the case of equation (2) the corresponding mappings are given
by

(3} Kv(s) = Lms, t)v(t)dt, Muls) = £(s, uls)) .

In this paper we obtain existence theorems in a closed subspa-
ce of LP =1P(N1) for the following variant of Hammerstein’s

integral equation

(4) u(s) + j# K(s, t)£(t, u(t), Bu(t))dt =0 .

Here f 1s a function which satisfies Carathéodory conditions
as a function of three variables, B 1is a linear bounded map
from a closed subspace Y of P to 19,

We define the Nemytskii operator G on a space of pair
of functions by

(5) G(u, v}(s) = (s, uls), vis)) .

The following lemma is proved as the corresponding one Krasno-
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selskii [13].

Lemmg 1. Suppose that the operator G maps all of

IPx L9 into 19 » where -2; + 4 =1, p>1. Then the

operator G 1is continuous and bounded.

We now define a new operator F on the space Y by
Fu = G(u, Bu), or

(6) : Fu(t) = £(t, u(t), Bu(t)), ue ¥

and a linear integral operator 4 on LP by

(7 Au(s) = LK(S, tlu(t) .

We have the following lemmas.

Lemmg 2. Let the function £ be such that the operator
G given by (5) maps all of LPx L9 into LY . Then the
operator F given by (6) is a continuous bounded map from ¥
to L9, (p>1).

Proof: Let G(u,v)(t) = £(t,ult),v(t)) and Ju =4U,Bu},
then F = Goj . Since G maps LPx L3 to L%, by Lemma 1
G is a continuous and bounded map from LP=x L9 to L% . sin-
ce J 1is a continuous map from Y to LPx L4 , it follows
that the composite map Goj = F 1s a continuous and bounded
map from Y to 19,

Definition 1. If X is a real Banach space and X* its
dual, we denote by {w,ud the duality pairing between the
element w of X* and the element u of X . A mapping &
of X into X¥* is said to be monotone if for all u, v in
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X we have

(8) CAu-Av,u=-v) 20,

We now define angie-bounded map, for reference see Browder

and Gupta [3] .

Definition 2. If A 1is a bounded monotone linear map of
X into X*, then A is said to be angle-bounded with con-

stant o Z 0 if for all u, v in X we have

/
(9)  1<Au, v> -<Av, u)| <2 §< Au, n)}‘"g{(h, V>3"2 .

It is clear that every monotone map A which is symmetric
(i.es C(Au, v> = {(Av, u) for all u, v in X ) is angle~

bounded with « =0 .
Hereafter we shall make use of the following theorems of

Amann [1) for the abstract equation of Hammerstein type (2).

Theorem 1 (Amann), Let X be an arbitrary Banach space
and let A: X—> X* be a linesr, injective, monotone compact
operator. Let Y be a closed subspace of X* which contains
the range of A . Let F: Y—» X be continuous and bounded

and assume that there exists a constant 90 > 0 such that

(10} <¢u, A™lu> + <u, Fud> > 0 for ue R(A) anmd
ﬂul>9° .

Then the Hammerstein operator equation

(11) u + AFu =0

has at least one solution u in Y . Moreover every solution
satisfies lull¢ @, .
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Theorem 2. Let X Dbe an arbitrary Banach space and
let A: X—> X* be linear, angle-bounded with constant o =
Z 0 end compact. Let Y be a closed subspace of X* which
contains the range of A . Let F: Y—>X be continuous and
bounded and assume that there exists a number @,> 0 such
that for all u e R(A)

(12) Cuy Fud>2 -1+ )T al™t hut?

for all Rull > ®o °

Then the Hammerstein equation (11) has at least one solution

u in Y for which ful ¢ gbo .

2, Existence theoremg. In the following theorems p>1,
and || < o .

Iheorem 3. Suppose
(i) the kernel K is such that the linear integral ope-

rator A defined by (7) is compact monotone and its range is
contaifxed in Y which is a closed subspace of P,

(ii) B is a 1linear bounded operator from Y to 19
and algo from L%® to L% , Further it satisfies the condi-
tion

(13) In_Bu(t)u(t)dt Z0 for all u in Y.

(11i) The function f 1s such that the operator G gi-
ven by (5) maps all of IPx L3 +o L9, Also assume that

lu\;,’é“,’\v\ebelf(t’u"’)l is in L'(0) where 6 >0 1s such

that
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(14)  ur(t,uyv) 2 c|u|/P +duv for |ul>6 ,veR,

c>0,d20.

Then the integral equation

(%) uls) + I K(s,t)f(t,ult),Bu(t))dt =0
Q

has a solution u in Y such that fu ll & ®, » where @,
is such that

(15) o = ic [c6® lal + ate) + adlal] .

1
Here a(€ ) denotes the L* norm oflu‘éss’nww bslf(t,u,v)l ,

b the L® to L% operator norm of B and lull the LP norm
of u.

Proof. The assertion will follows from Theorem l. We set
X =13 ond define F and A as in (6) and (7)., Then X* =
= 1P

and (%) is equivalent to the operator equation

Cxxx) u+AFu=0.

Since F satisfies all the conditions of Lemma 2 it fol-
lows that F 1is a continuous bounded mapping from Y to X .
Similarly A is a continuous, monotone and compact map from
Y to X* whose range is contained in Y . Furthermore by

(13} and (14) we claim that < u,Fu) >0 for lull>@, whe-
re

¢u,Fu) = I&u(t)f(t,u(t),Bu(t))dt .

Assume to the contrary that
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j'n_u(t)f(t,u(t),Bu(t))dt £ 0,

for some u, lull>@, . Then

P - p z 6P p
&.‘u‘ fM=-(t:\u(t)|£61'u‘ " IM“MP'G laf fmc’“‘

v 4
£ 6™lal + 2 chtu(t)f(t,u(t),Bu(t)) -
- du(t)Bu(t)] at = e™]0| «+ % jnu(t)f(t,u(t),
Bu(t))at - & [, utompatrar - T, et uc),
Bu(t))at + < [, uto)butdat ¢ s*1al »
+ L (a2, u0e),Bult)) | at »

C n

+ %’fm lutt)] |BuCt)| at < 6o+

ola

j sup [£(t,u,v)| at +
M Jule 6 ,lviebe

2
+ 4o [ 1But)]at « 6®)a] +& ae) +28 & |q)
c m 3 c
=-':; [c6™|n] + sale) + ave?lald

ice. lull€ @, , a contradiction.
Thus F and A in the operator equation (x x x ) satis=-
fy all the conditions of Theorem 1 and therefore the result

follows,
If the operator A ie assumed to be angle-bounded, then

the hypothesis on the operator B can be relaxed as we see

in the following theorem.
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Theorem 4. Suppose

(1) the kernel K is such that the linear integral ope-
rator A defined by (7) is compact, angle-bounded with con-
stant o« z 0 and its range is contained in Y , a closed
subspace of P .

(11) B is a linear bounded operator from Y to L%
and also from L® to L% .,

(1i1i) The function f is such that the operator G gi-
ven by (5) maps all of LPx 1% to 19 . Also

sup j£(t,u,v)| 1s in tt) , where 6 >0 is
lulé€,lvie be

such that
(16) ur(t,u,v) 2 = ¢ |u|¥ |vl® for lul>6 ,veRm
—;‘; +€l=1 ,T+tsk2.
Then if
AN Galelg, +clBL® o TP < 1 aah) T Ial

the integral equation (X ) has a solution u in Y satis-
fying Wul &£ @, . Here al(6) , b-and Nlull are as defi-
ned in Theorem 3 , A B} the LP—» LY operator norm of B .
Proof. The assertion will follow from Theorem 2. As be-
fore we set: X = LY and define the operators F and & as
in (6) and (7) respectively. Then X* = LP and (x) is equi-

valent to the operator equation .
(koxx} u+ AFu =0

F 1s a continuous bounded map from Y to X . By hypothesis
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on the kernel K , A is a continuous, angle bounded, com—
pact map from X to X* whose range is contained in Y .

Furthermore by (16) we have

fute)Fatt)at = [ ult)r(t,ult), B ult)) at
'n dex

=£ u(t)e(t,ult), Bult)) at +
t:lu(t)>63

’f ult)rit,ult), Bult)) dt
M={t : lu(t }ew3

> -c Llu(t)\r | Bu(t)|® at - j“\u\\r(t_ ,u(t), Bu(t))] at
- pyr/p qys/q
o 2 o Llul ) (.[nlBu\ )

- ¢ \e(t,u,v)\at

a Tﬁec‘,lvk b6

==clul? IBuI\:- 6al6)2 - clBl® ul™® - gale) .

Using (17) we have

¢, Fud> 2 =1+ &3 Nal7H g for Hul>g, -

{u, Fu»z -(1 + 2L 1 a0 fut? for Hu|>@° .

Since the o_peratc;rs & and F satisfy all the hypotheses
of Theorem 2 (%xx*) has a solution u in Y such that
\ub & @, . This implies that (% ) has a solution u in
IP(Q) satisfying Vule @, .
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Remark. (17) is satisfied for all sufficiently large ®o
if either r + 3 <2 or r +3 + 2 and cIBl\s< .
< (1 +«2)™ 1 al™L . In these two cases (x) has a solution
in 1IP(Q) .

If f does not depend on v , we obtain the following ex-

istence theorem for Hammerstein equation

(18) u(s) *»LlK(s,t)f(t, ult))at = 0

as a corollary to Theorem 4.

Corollary l. Suppose
(i) the xernel K(s,t) satisfies condition (i) of Theo-

(ii) The function f is such that the operator F maps
P to LY and for some 6 > 0 and |svilp |£(t,u)] 4s in
ulse

rem 4,

1! and

(19) uf(t,w)2 - ¢ |ul?P for |ul>€ .

Ir

(20) fale) G2 +cor-< Lrodlhald, pez,

then the Hammerstein equation (18) has a solution u in P
with lull ¢ @, -

Proof.  This is a direct consegquence of Theorem 4.

If the operator B is defined on the whole space P y in
particular by the kernel Kl as

(21) Bu(s) = I K; (s,t)ultlat
’ Qo
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then we obtain the following existence theorem for the in-

tegral equation
(22) (s) K(s,t)f(t ult), K, ( Jule)de)dt =0
ul(s) + ‘[Q s, u J; 1'8,¥ Jute)de

as a corollary to Theorem 4.

Corollary 2. Suppose

(1) the kernel K satisfies condition (i) of Theorem 4.

(i1) The kernel K, is such that the operator ‘B is a
bounded operator from LP to L3 and also from L% to L%®.

(ii11) The function f satisfies condition (iii) of Theo-
rem 4.

Then the integral equation (22) has a solution u in P
with Aul ¢ ®, » where @, is a positive number satisfying
(17).

Proof. This is a direct tonsequence of Theorem 4.

Remgrk., Existence and uniqueness of the solution of in-
tegral equation (22) have been discussed by Nesterenko [161 ,

who uses the method of degenerate kernels.

3. Nonneggtive solutions
Definition 3. Let X be a Banach space. A set K& X

is called a cone if the following conditions are satisfied:
(a) the set K is closed ,
(b} if u,veK then ocu+ fvek forall <,B2
z0, ,
(¢J for uk 0O ,uekK, there is -~ u§ K.
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Nonnegative functions form a cone in 1P spaces. Existence
of nonnegative solutions of the operator equations has been
discussed in detail by Krasnoselskii [14] with applications
to non-linear integral equations and boundary value problems.
In this section we shall discuss about the existence of the

operator equation

(23) u = AFu

in a cone. Here A and F are operators as defined earlier.
The operators A and F are assumed to be such that A maps
a cone K2 into a cone Kl and F maps Kl into K2 . We
have the following theorem as an easy generalization of Theo-

rem 2 for the operator equation (23).

Theor » Suppose X 1is a real Banach space X*¥  its
dual and A: X—>» X* 4s linear, angle-bounded with constant
o 2 0 and compact and its range is contained in a closed
subspace Y of X* , Further assume that A(K,) € K; where
K, 1s a cone in X and K; 1s a cone in Y . Let F:

: Kl—’ K, be cont inuous and bounded and assume that there

exists a constant e > © such that

(24) <Cu,Fud < @+ &) 020 0ul? ror a1l ue K
and lul > @, -

Then the operator equation (23) has a solution u in K,

with lulle @, -
As a consequence of the above theorem, we obtain the fol-

lowing theorems for non-linear Hemmerstein type integral equa—

tions. It is interesting to note that as a corollary we obtain
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results similar to those of Krasnoselskii [14)] =nd Hammer-

stein [7].

Theorem 6. Suppose
(i) +the kernel K is such that the operator A defi-

ned by it is angle-bounded (with constant o« Z 0 ) and
compact operator from L% to IP

(l< peg2 ,-};*% =1 ) ; moreover K(s,t) = 0 for all

S,t c Q 3
(i1) the function f satisfies the Carathéodory condi-

tions and
(25) 04 £(t,u) £ a(t) +bu" , uz 0

ael? ,b>0 r&p-1.
Ir 90 is a positive number such that

(1- 24

(26) e 'tal + & o1l < a7
then the integral equation
(27} uls) = [ K(s,t)e(t,ult))at

o

has a nonnegative solution u in LP satisfying lullg e, -
m_qg. We take K1 and K, as cones of nonnegative
function and then proceed as in Theorém 4.

Remark 3. (26) is satisfied for all sufficiently large

1-2/0) <

@, if either r<l, or r=1 and blal
< (1 +ab)7 WAN "1 . In these two cases (27) always has a

non-negative solution in 1P ., In view of Remark 3, we obtain
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the following corollary.

Corollary 3. Suppose

(i) the kernel X is such that the operator A is ang-
le~bounded (with constant o Z O ) compact operator from L2
to L2 , and K(s,t) Z 0 for s , te O .

(11) The function f satisfies the Carathéodory com-

ditions and

(28) 0¢ r(t,u) & alt) + bu, uz 0
actl y b>0

(29} bl + o) Nall<1 .

Then thg integral equation (27) has a nonnegative solution u
in 12 .

For « =0 (symmetric kernel) this reduces to one of
Hammerstein’s original results [73.

We now give a similar theorem for the integral equation

uls) = jnK(s,t)f(t,u(t), Bu(t))dt

Theorem 7. Suppose
(i) the kernel K satisfies all the conditions of Theo-

rem 5 with the additional hypothesis that the range of A is
contained in a closed subspace Y of P .
(11) B is a bounded linear operator from Y to L%,
€111) The function f satisfies Carathéodory condi-
tions and
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(30) 04 £t ,u,v) £ a(t) + byu” + 62 uP [vIT , uzo,

veR
sel?,b,>0,b,>0,r&p- 1,
+4
(3"‘7'5‘-13‘1, L*'I:l'
o %
It ®o is a positive number such that
- | |(4-§%1) pry-1 ¥
1) g hall + & b, 10 + e, by 1B
< 1+ gan?t .
Then the integral equation
(32) uls) = J’nK(s,t)f(t, ult), Bu(t))dt

has a nonnegative solution u satisfying Wul & @ *
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