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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CABOLINAE 

1 6 , 2 (1975) 

EXISTENCE THEOREMS K)R A VARIANT 0? HAMMERSTEIN' S INTEGRAL 

EQUATION 

M. JOSHI, P i l a n i 

Abs trac t : , Existence theorems are obtained f o r a .variant 
of Hammerstein s i n t e g r a l equation of the type 
u ( s ) • J ^ k t s j t ) f ( t f u ( t ) , Bu(t) )dt * 0 where B i s a bounded 
l i n e a r operator from a c losed subspace of Lp t o L^C- •--*-- 1) . 
The kernel K i s assumed to be such that the l i n e a r i n t e g r a l 
operator A g iven by Au(s) » f K ( s f t ) u ( t ) d t i s compact 
and angle-bounded. The funct ion f s a t i s f i e s the usual Nemyt-
sk i i type conditions and the condition uf(t f u,v) * 
* cluj^lvl^ f S * £ ; s 1 f o r suff ic ient ly large u and a l l v . 

Key words: Hammerstein equation, angle-bounded operator, 
Caratheodory conditions• 

AMS: 47KL5 Ref. 2 . : 7.978.5> 

1. Introduction. A nonlinear integral equation of Hammer­

stein type is of the form 

(11 u(s) • J K(s, t)f(tf u(t))dt « 0 . 

Usually one assumes that i l i s a measurable subset of Rn
 f 

f ( t ,u ) i s a function of the variables t c i l f u e It s a t i s ­

fying the so-called Carathet>dory conditions i . e . f ( t f u ) i s 

continuous with respect to u for almost a l l t % XI and mea­

surable with respect to t for a l l values of u . There i s an 
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extensive l iterature on Hammerstein equations with contribu­

tions by Hammerstein t 7 j , Ig l i sh t 8 ] , Golomb t6)f Dolph [ 4 ] , 

Rothe [17J, Vainberg 118] , Krasnoselskii [ 13] and others. In 

recent years monotonicity concepts have lead to the detailed 

study of a more abstract Hammerstein type equation by many 

authors which include Kachurovsky t 9 ] , Vainberg [18] , Dolph-

Minty [ 5 ] , Kolodner [ 1 0 ] , BrSzis [ 2 ] , Kolomy t i l ] , Amann [ 1] 

and Browder-Gupta t3]« The abstract form of Hammerstein's 

equation is 

(2j u + KNu * 0 

where K is a linear mapping and N a nonlinear mapping. In 

the case of equation (2) the corresponding mappings are given 

by 

(3) Kv(s) ~ J K(s, t)v(t)dt, Nu(s) = f(s, u(s)) . 

In this paper we obtain existence theorems in a closed subspa?-

ce of Lp = lP(fl } for the following variant of Hammerstein s 

integral equation 

(4) u(a) * f K(s, t ) f ( t , u ( t ) , Bu(t))dt ~ 0 . 

Here f i s a function which sat i s f i es Carath^odory conditions 

as a function of three variables, B i s a linear bounded map 

from a closed subspace X of lP to l/* • 

We define the Nemytskii operator G on a space of pair 

of functions by 

(5) GCu, v ) ( s ) = f ( s , u ( s ) , v ( s ) ) . 

The following lemma is proved as the corresponding one Krasno-
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s e l s k i i [13 ) . 

Lemma 1. Suppose that the operator G maps a l l of 

Lpx Lq into Lq
 f where i • - =- 1 f p > 1 . Then the 

operator G is continuous and bounded. 

We now define a new operator F on the space X by 

Fu =-= G(uf Bu), or 

(6} Fu(t) = f ( t , u ( t ) , Bu(t)) , u c X 

and a linear integral operator A. on Lp by 

(7) Au(s) « f K(s, t)u(t) . 

We have the following lemmas. 

Lemma 2. Let the function f be such that the operator 

G given by (5) maps a l l of Lpx Lq into Lq . Then the 

operator F given by (6) i s a continuous bounded map from X 

to Lq , ( p > 1) . 

Proof: Let G(ufv) (t) = f ( t ,u ( t ) ,v ( t ) ) and j u M U , B u } , 

then F » Goj • Since G maps iPx Lq to Lq
 f by Lemma 1 

G is a continuous and bounded map from Lpx Lq to Lq . Sin­

ce j i s a continuous map from X to Lpx Lq
 f i t follows 

that the composite map Goj « F i s a continuous and bounded 

map from X to Lq
 # 

Definition 1. If X i s a real Banach space and X* i t s 

dual, we denote by <wfu> the duality pairing between the 

element w of X* and the element u of X . A mapping A 

of X into X* i s said to be monotone i f for a l l u, v in 
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X we have 

(8) < Au - Av, u - v > £ 0 • 

We now define angle-bounded mapf for reference see Browder 

and Gupta C3]. 

.Definition 2. If A i s a bounded monotone linear map of 

X into X5*4 , then A i s said to be angle-bounded with con­

stant oc 2: 0 i f for a l l u, v in X we have 

A/0 */0 

(9) l<Au, v> -<Av , u > | <;t«M<.tuf u» -l<Av, v>! 

It i s clear that every monotone map A which i s symmetric 

( i . e . <Au, v > = <Av, u> for a l l u , v in X ) i s angle-

bounded with 06 a 0 « 

Hereafter we shall make use of the following theorems of 

Amann [13 for the abstract equation of Hammerstein type (2) . 

Theorem 3. (Amann). *** x he an arbitrary Banach space 

and let A: X—* X* be a l inear , inject ive , monotone compact 

operator. Let X be a closed subs pace of X* which contains 

the range of A • Let F: X-—> X be continuous and bounded 

and assume that there exists a constant (p0 > 0 such that 

CIO) <u, A~1u> +\ < u, Pu > > 0 for u c R(Aj and 

« u I > f>0 • 

Then the Hammerstein operator equation 

(11) u * AFu -* 0 

has at least one solution u in Y . Moreover every solution 

sa t i s f i e s II u II £ « * * o 
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Theorem 2. Let X be an arbitrary Banach space and 

le t A: X—*» X* be l inear, angle-bounded with constant oc > 

>. 0 and compact. Let Y be a closed subspace of X* which 

contains the range of A . Let P: Y—-*-X be continuous and 

bounded and assume that there exists a number JSL > 0 such 

that for a l l u e R(A) 

(12) < u , Pu > £ - (1 • oc/1)''4 It A H""1 I u l 2 

for a l l luH > j>0 . 

.Chen the Hammerstein equation (11) has at least one solution 

u in X for which \ u \\ £ f . 

2. Existence theorems. In the following theorems p > l , 

and | i l | -< OD . 

Theorem j . Suppose 

( i ) the kernel K i s such that the linear integral ope­

rator A defined by (7) i s compact monotone and i t s range i s 

contained in Y which i s a closed subspace of lP • 

( i i ) B is a linear bounded operator from Y to Lq 

and also from L** to L00 . Partner i t sa t i s f i e s the condi­

t ion 

(13) f Bu(t)u(t)dt 2 0 for a l l u in Y . 

( i l l ) The function f Is such that the operator G g i ­

ven by (5) maps a l l of iPx Lq to Lq . Also assume that 

|ttlirVplvl & bt f l : f * t , u , v ^ i a i n L '•&•* where 6* > 0 i s such 

that 
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(14) uf ( t f u,v) £ c | u | p • duv for [u| > € f v eJR , 

c > 0 j, d > 0 • 

Then the integral equation 

( * ) u ( a ) • f K(s f t ) f ( t f u(t ) ,Bu(t ) )dt - 0 

has a solution u in X such that \\ u ft £ <p f where <p0 

i s such that 

(15) $>* » - 1 [c6P |al • a(6f ) + db6*|H|] -

Here a(ff ) denotes the L1 norm of | U w # 3 l | | u b 6 ^ ^ »u»v)J , 

b the L°° to L*30 operator norm of B and lul l the Lp norm 

of u • 

Proof. The assertion wi l l follows from Theorem 1. We set 

X a Lq and define P and A as in (6) and (7) . Then X* -

» Lp and ( * ) is equivalent to the operator equation 

C * * * ) u • APu - 0 . 

Since P sa t i s f i e s a l l the conditions of Lemma 2 i t f o l ­

lows that P i s a continuous bounded mapping from Y to X . 

Similarly A i s a continuous, monotone and compact map from 

T to X* whose range i s contained in Y . Furthermore by 

(13J and (14) we claim that < u,Pu > > 0 for l«.*>§>0 whe­

re 

<ufPu> « f u ( t ) f ( t ,u ( t ) f Bu(t ) )dt . 

Assume to the contrary that 
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f u ( t ) f ( t , u ( t ) , B u ( t ) ) d t £ 0 , 

for some u f 8 u II > -̂>Q • Then 

* er l̂aj + i J [u(t)f(t,u(t),Bu(t)) -

4-

- du(t)Bu(t)J dt * tT^lill • -1 f u ( t ) f ( t , u ( t ) f 

Bu(t))dt - — J u(t)Bu(t)dt J u ( t ) f ( t f u ( t ) , 
C J& C WM ' * 

Bu(t))dt • — f u(t)Bu(t)dt £ d ^ | i l | • c JM 

i- [ | u ( t ) | | f ( t f u ( t ) , B u ( t ) ) l dt 

- f | u ( t ) | |Bu( t ) | dt £ 6*\SL\ + 

6* r 
• — sup | f ( t f u ,v ) l dt * 

° JM | u U 6 , | vUb6 
• ft£ f | B u ( t ) | d t £ 0* | - a | * £ a ( * ) • i S L t j A l 

c JM l c c 

-s-i tce^lJXl + tfa(6 ) • db<y2lil |3 
e 

i . e . II u II £ <&0 , a contradict ion. 

Thus F and A in the operator equation ( * * * )• s a t i s ­

fy a l l the conditions of Theorem 1 and therefore the resul t 

follows. 

If the operator A» is assumed to be angle-bounded, then 

the hypothesis on the operator B can be relaxed as we see 

in the following theorem. 
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Theorem 4. Suppose 

( i ) the kernel K i s such that the linear integral ope­

rator A defined by (7) i s compact, angle-bounded with con­

stant «£ z 0 and i t s range is contained in Y , a closed 

subspace of Lp • 

Cii) B is a linear bounded operator from X to ifl 

and also from Lm to L00 . 

( i i i ) The function f i s such that the operator <* g i ­

ven by (5) maps a l l of LPx Lq to Lq . Also 

sup | f ( t , u , v ) | is in L C&) , where 5" > 0 i s 
l u l s s f IvUbfJ 
such that 

(16) uf( t ,u ,v) *> - c j u | r \ v l s for | u l > £ f v e I R 

_ • - . » ! , r + s f » 2 . 
<fv <i 

Then i f 

(17) e f a t e J ^ • c I1BH8
 ? o

 p*8"2 < (1 + * 2 ) - 1 U H - 1
 f 

the integral equation (* ) has a solution u in X s a t i s ­

fying t u l .4^0 • Here a ( 6 ) , b and | a t are as def i ­

ned in Theorem 3 , IB 11 the Lp—» Lq operator norm of B • 

Proof. The assertion wi l l follow from Theorem 2. As be­

fore we set X a* L^ and define the operators P and A as 

in (6) and (7) respectively. Then X* « Lp and (# ) i s equi­

valent to the operator equation -

( * * * J u • AFu =- 0 

F is a continuous bounded map from X to X . By hypothesis 
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on the kernel K , A i s a continuous, angle bounded, com— 

pact map from X to X* whose range i s contained in I » 

Furthermore by (16) we have 

[ u(t)FuCt)dt = J u ( t ) f ( t , u ( t ) , B u(t)> dt 

* f u ( t ) f ( t , u ( t ) f Bu(t)) dt + 
tttlu(t)l>tfj 

• f u(t ) fCt f u(t ) , Bu(t)) dt 
J.M-Mt:lu(t)k«3 

> ~ c f l u ( t ) l r lBu( t ) l 8 dt - f l u l l f ( t ,u( t ) f Bu(t))l dt 

> - c( r u i p ) r / p ( r iBuiq)a/(i 

- 6 f sup t l f ( t ,u f v) ldt 
a л U U t f , I v U Ь6 

- c t u l l г ІBuЦ* - в a ( б ) > - c в B І Ä | u Ц г + 8 ~ tfaCtf ) • 

Using (17) we have 

<u f Fu> £ - (1 • OJT1 II A l l " 1 ! ^ 2 for 1 t*lt;><p0 . 

Thus 

< uf Pu> > - (1 • oC^)"1 J A II ~1 | uH 2 for A u 1 > po . 

Since the -operators A and F sat isfy a l l the hypotheses 

of Theorem 2 ( * * # ) has a solution u in X such that 

1 u l .4 $0 • This implies that (* ) has a solution u in 

lPlSL) satisfying I u R * <*0 • 
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Remark* (17) i s sa t i s f i ed for a l l suf f ic ient ly large m0 

i f e i the r r + s < 2 or r • s *• 2 and c | B H s < 

< ( l * oc2)~ l A l l " . I n these two cases ( * ) has a solut ion 

in LpCiD . 

I f f does not depend on v , we obtain the following ex­

istence theorem for Hammerstein equation 

(18) u(s) * f K ( s , t ) f ( t , u ( t ) )d t =- 0 

as a corollary to Theorem 4. 

Corollary 1. Suppose 

(i) the kernel K(s,t) satisfies condition (i) of Theo-
M 

rem 4. ^ 

Cii) The function f i s such that the operator P maps 

1^ to Lq and for some 6* > 0 and sup l f ( t , u ) | i s in 
, lute* 

Lx and 

(19) u f ( t , u ^ - c | u | p for \n\ > € . 

I f 

(20) 6?a (6 ) <f* * c ^ 2 < ( 1 •*V1Uir\ F* 2 , 

then the Hammerstein equation (18) has a solution u in L p 

with I u I £ $ D • 

Proof. This is a direct consequence of Theorem 4. 

If the operator B is defined on the whole space Lp , in 

particular by the kernel K, as 

(21) Bu(s) = f K1(s,t)u(t)dt 
JX 
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then we obtain the following existence theorem for the i n ­

tegral equation 

(22) u(s) + f K(s f t ) f ( t u ( t ) , f KnU,* )u(<e)dr )dt = 0 

as a corollary to Theorem 4» 

Corollary 2. Suppose 

( i ) the kernel K sa t i s f i e s condition ( i ) of Theorem 4. 

( i i ) The kernel K̂  i s such that the operator »B i s a 

bounded operator from L^ to L^ and also from L°* to L0 0 . 

( i i i ) The function f sa t i s f i es condition ( i i i ) of Theo­

rem 4 . 

Then the integral equation (22) has a solution u in Lp 

with H u II 6 £>0 , where £>0 i s a positive number satisfying 

(17). 

Prooff. This i s a direct consequence of Theorem 4. 

Remark. Existence and uniqueness of the solution of in­

tegral equation (22) have been discussed by Nesterenko t l 6 l , 

who uses the method of degenerate kernels. 

3. Nonnegative solutions 

Definition 3 . Let X be a Banach space. A set K S X 

i s called a cone i f the following conditions are sat is f ied: 

(a) the set K i s closed , 

(b) i f u, v e K then oc u • (& v € K for a l l oc, fi £ 

£ 0 , 

(c) for u 4- 0 f u c K , there i s - u $ K • 
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Nonnegative functions form a cone in Lp spaces. Existence 

of nonnegative solutions of the operator equations has been 

discussed in deta i l by Krasnoselskii £14] with applications 

to non-linear integral equations and boundary value problems. 

In this section we shall discuss about the existence of the 

operator equation 

(23J u =* APu 

in a cone. Here A and F are operators as defined earl ier . 

The operators A and F are assumed to be such that A maps 

a cone Kp into a cone Kj. and P maps K- into K̂  . We 

have the following theorem as an easy generalization of Theo­

rem 2 for the operator equation (23). 

Theorem 5. Suppose X i s a real Banach space X* i t s 

dual and A: X—*X* i s l inear, angle-bounded with constant 

oo > 0 and compact and i t s range i s contained in a closed 

subs pace X of X* # Further assume that A(K>) £ K* where 

K̂  i s a cone in X and K* is a cone in Y . Let P: 

: K, — ^ Kp be continuous and bounded and assume that there 

ex is ts a conttant po > 0 such that 

(24) <u,Pu> < (1 * •C?)"1 t U I I - 1 Jttll2^ for a l l u 6 K̂  

and 1| n H > >̂0 • 

Then the operator equation (23) has a solution u in K. 

with: 8u8 £ $>0 • 

As a consequence of the above theorem, we obtain the f o l ­

lowing theorems for non-linear Hammerstein type integral equa­

t ions . It i s interesting to note that as a corollary we obtain 
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r e s u l t s s imilar to those of Krasnoselskii [14] and Hammer-

s t e in [ 7 ] . 

Theorem 6. Suppose 

( i ) the kernel K i s such that the operator A d e f i ­

ned by i t is angle-bounded (with constant o c 2 0 ) and 

compact operator from L^ to iP 

( l < p p ^ 2 > — - f c - i a i ) ; moreover K(s , t ) £ 0 for a l l 
ft % 

s , t c XL t 

( i i ) the function f s a t i s f i e s the Carath^odory condi­

t ions and 

(25) 0£ f ( t , u ) £ a ( t ) + bu r , u .> 0 

a e Lq , b > 0 r * p - 1 . 

If ^ i s a posit ive number such that 

(26) $>^HaR • p j ^ b l i l j " " ^ " ^ (1 +&*rl IUII ~l 

then the in tegra l equation 

(27) u(s) =* / K ( s , t ) f ( t f u ( t ) J d t 

has a nonnegative solut ion u in Lp sa t is fying t u> II £ fQ . 

Froof* We take K, and Kg, as cones of nonnegative 

function and then proceed as in Theorem 4 . 

Remark 3> (26) i s sa t i s f i ed for a l l suf f ic ien t ly large 

£0 i f e i t he r r < 1 , or r =- 1 and b IJOLI < 

-c (1 + oc2)"*1 IIAK ~1 • In these two cases (27) always has a 

non-negative solut ion in Lp • In view of Remark 3, we obtain 
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the following corollary. 

Corollary 3. Suppose 

(i) the kernel K is such that the operator A is ang-
fy 

le-bounded (with constant oc> £ 0 .) compact operator from L 

to L2 , and K(s f t) *> 0 for s , t * i t . 

( i i ) The function f s a t i s f i e s the Carath£odory coa-

di t ions and 

(28) 0 £ f ( t , u ) £ a ( t ) + buf u £ 0 

a c L2 , b > 0 

(29) b( l • oca) HAH-* 1 . 

Then the in tegra l equation (27) has a nonnegative solut ion u 

in L2 • 

For oc - 0 (symmetric kernel) t h i s reduces to one of 

Hammerstein's or iginal r e s u l t s t73« 

We now give a s imilar theorem for the in tegra l equation 

u(s) - Г K ( s , t í f ( t f u ( t ) f Bu(t)) dt 

Theorem 7. Suppose 

( i ) the kernel K s a t i s f i e s a l l the conditions of Theo­

rem 5 with the addit ional hypothesis that the range of A i s 

contained in a closed subs pace T of iP • 

( i i ) B is a bounded l inear operator from X to ifl- . 

Ci i i ) The function f s a t i s f i e s Carath^odory condi­

t ions and 
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(30) 0 £ f ( t , u , v ) £ a ( t ) + b-̂ u1* • b 2 u^ I v l r , u 2T0 , 

V € E 

a € Lq , b 1 > 0 , b 2 > 0 , r £ p - 1 , 

P* r* p -1. ~ * a = 1 • 

I f 5&0 i s a p o s i t i v e number such t h a t 

( 3 D ? ; ^ U I • ^ b ^ - a i " * * ? * * r b 2 J B H r 

< ( i ^ o c 2 ) " 1 i i A i r 1 . 

Then the i n t e g r a l e q u a t i o n 

(32) u ( s ) = f K ( s , t ) f ( t , u ( t ) , B u ( t ) ) d t 

has a nonnegat ive s o l u t i o n u s a t i s f y i n g Null 6 <pQ 
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