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COMMERTATIONES MATHEMATICAE UNIVERSITAfIS CAROLINAE

15,4 (1974)

ON THE GEOMETRIC CHARACTERIZATION OF DIFFERENTIABILITY. II.

Ji¥{ DURDIL, Praha

Abstract: In this paper, the geometric characterization
of differentiability in Banach spaces is given. It is shown
that a mapping F: X—>Y possesses the Fréchet derivative
F’(Xo) at a point X, iff F is continuous at x; and

certain tangent cone to the graph of F coincides with the
graph of some continuous linear mapping L : X—Y (it is
P’ (x,) = L in that case).

Key words: Banach space, Fréchet derivative, conic li-
pit, tangent cone.

AMS: 4TH99, 58C20 Ref. Z. 7.978.44

The present paper is a free continuation of [11]. Both
these papers deal with geometric characterizations of diffe—
rentiability in Banach spaces.

The problem of geometric characterization, eéspecially -
in finitely dimensional spaces, was studied by uamr authors,.
e.g. [2] - [81,[101,[11]); the characterizations given there -
were based on two basic notions: tangent plane [6]),[11] and
tangent cone [4]. The latter notion, in fact generalizing
the first one, was then used in various applications, name-
ly to nonlinear programming (see e.g. [11,041,053,[9]).

In the first part of our paper [11}, the geometric cha-

racterization of differentiability of mappings in Banach



spaces in terms of tangent flats (planes) was presented.
In the second part of [11], we discussed the problem sta-
ted by T.M. Flett in [4) (see also [5]): whether the F -
differentiability in Banach spgces can be characterized
in terms of tangent cones (in the sense of Flett [4]). We
showed there in an example that such characterization is
not possible even under very strong restrictions (e.g. in
case of'a Lipschitzian mapping from the real line into a
Hilbert space) and we tried to find the cause of it.

Bearing in mind our conclusions made at the end of
[11], we shall now modify the notion of a tangent cone in
such a manner to obtain the required characterization of
differentiability. The relations between this new notion
and the similar ones of other authors ([1],[41;[9]) will
be stated, too.

The author would like to thank Prof. J. Kolomy for his
suggestions in regard to this paper.

1° Let Z be a Banach space and z, &€ Z . A set C c
©Z such that A(C-2,)cC-2, for every A 20 is said
to be a cone with a vertex =, ; the cone C=4{z,} is said
to be degenerated. Denote B, :{zxe€ Zslxlle x} and S =
={zeZ:slaxl =1% .

-

Definition. A cone € e Z with a vertex z, is said
to be generated by a set M c Z iff csn%%c%w,(m-z,».

Let C be a cone with a vertex z, , let ¢ >0 ;the cone

with the vertex z, generated by the set(C A (z + S)+ By
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is said to be the conic € =-neigbourhood of C and denoted

Let C, (m=4,2,,,.) be cones in Z with a common ver-
tex z, . Then two possibilities arise: either such a set
C, c Z can be chosen that there is m, for every ¢>0
such that C,c Ug(C,) and C,c Ug(C,) whenever m 2m,,
or no Co cZ has this property. It is easy to see that if
C° , C; are two sets having the property above, then Eo =
= C, eand C, has that property, too; moreover, G, is a

closed cone with a vertex at Z, .

Definition. Let Cp, (m=4,2,..) be cones in Z with
a common vertex %, . The conic limit of C, is defined to be
the union of the set {z,% with all cones Cc Z having the
property: there is m, for every ¢ > 0 such that C ¢
c U,(Cp) and Cp e U (C) whenever m = m, . We denote
this limit by %—_’ﬂgn Cm and call it regular if it cont-
ains more than one point. The conic limit of an uncountable
system of cones is defined in a similar way.

It follows from the preceding discussion that a conic li-
mit is always a closed cone with a vertex at z, (which is de-
generated in case of irregular limit). Moreover, the following
assertions hold; their proofs are straightforward and so we

omit them.

Proposition 1. Let C, (m=0,4,2,..) be closed cones
in Z with a common vertex 2 Then C, is the regular co-

nic limit of C, (me4,2,.) if and only if for every x > 0,
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Co N (2g+By) —> €, A (2, +B,)
in the sense of Hausdorff metric in the space of closed boun-

ded subsets of Z .

Proposition 2. Let C, (m=4,2,...) be cones in Z
with a common vertex =z, , Cy,4 € Cyp for all m and sup-

pose that there is the regular conic limit Cj = 2;1.:» Co °

e _.
Then co = m'n4 c“' -

2° ©Now, we are prepared to define the improved notion
of a tangent cone (see the end of (2.2) in [11]). Hereafter,
we shall use the term "tangent cone” only in the sense of the

following definition.

Definition. Let Z be a Banach space, M c Z a non-
empty set and %, € M . Denoting

% - %z,

f&(ﬂ,zo)={§:$=x°+ﬁi—;:—;b—i-,

1)
zeM\N{x ¥ llz-2,0<x?

for » >0 ,the set
€M, ,2)) = C,‘—_’h'g;» €, M, z,)

is said to be the tangent come to M at the point =x, -

It is evident that all <€, (M,x,) are cones in Z with
the common vertex z, ,they are generated by the sets M n
Nz, +B,) and %,,1(.M,z°) € Cr, (M,z,) ifn sx,;
we call {¥,(M,z,): £ >0} the quasi-tangent system of co-

nes.
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The tangent cone defined in this way is always a non-
empty closed cone with a vertex z, (that may be degenera-
ted to {2,% ). It is in close connection with similar cones
of some other authors ([9]1,[4]1,[1]) as will be shown in Sec-
tion 3° but there is a difference there which makes it pos-
sible to characterize the F -differentiability of mappings.

Now, we prove our main theorem.

Theorem 1. Let X,Y be Banach spaces, Dc X, X, an
interior point of D and let F:D—>Y be a mapping.
Then P possesses the Fréchet derivative F’(x,) at x, if
end only if P is continuous at X, and there is a .continu-

ous linear mapping L : X—>Y so that

(2) €, (G(F),(x,,FlxyIN= (x;,Flx,)) + G (L) ;

if it is the case, then F'(xo) =L .

Proof. Denote Z =XxY and z,=(x,,F(x,)) . We shall
consider the maximum norm in X =Y, i.e. I(x,g)l; =
= max (Ixly, lgl,) , but it is not essential - arbitrary
equivalent norm in X %Y (e.g. a sum norm) can be conside-
red. Suppose that any neighbourhoods of X, or z, will be
anywhere dealt with, these will be sufficiently small to be

contained in D or D x ¥ , respectively.

1) Let P be F -differentiable at x, and denote
F’(x,) =L . Suppose that €, (G (F),2,) % x,+ G (L) ,
i.e. that the sequence {<€, (G (F), z,)} does not converge
in the semse of Section 1° +to %,+ G (L) . Then there are

€>0 and 2. >0 (m=4,2,..,) such that x —+0 and
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that for every m = 4,2,... ,

(3 €GP, ¢ %, +

t{leZ:fm@w(wse), u20,we G(L)nS,ceB, }
or

@) 2+ G(L) G ifeziimz+d (72-5-’2%:”) )

A20,2€G(FP), lz-2 ll €1, ,ceB,?
holds. Denote N, and N, the sets of those m for which
(3) or (4)‘is true, respectively; at least one of these sets
must be infinite.

Suppose N is infinite and denote the set on the right
side of the inclusion (3) by (=, + W) . By (3), there is

Ty, € e,‘wcq,cm,z,) for every m € N, such that z, ¢

& z, + I and hence
Zo + A(zp - x2,) & 2,+ 1

for all NLCN,I and A >0 because U is a cone. This means

that
1
I-@'fﬁ(zw-zo)— wwrl]z e

for all A, >0 and are G (L) with lawll = yparticular
1y,

(5) 1%y -2y ~uw il z aue

holds for all m e N;, «>0 and we G (L) with lawll = 4

where
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lzg — 2l € 2y , 25, —> 0
according to the choice of z, .
BY assumption, there is o°> 0 such that
IFCx) - F(x,) =~ Lix-x)l<elx-x,1

whenever |ix-x,l< d'(xeX). Let lzy-2z,l<d far all
m 2my, and choose X, &€ X such that z, = (x,,F(x,)). Then
Ixp-%l< d” if m Zm, and hence

IF(x,) = Flxy) = Lix, - %2 l< & lx, - X, |
for all such m . In the space X x Y , the relation

NCO, Flxp) ~ FXy) = Llxy-x, Nl <& Ix, - x|

follows and therefore

(6) W2y = 2, = (X, - X, , L(x,-x,N1 <

< emac (llx, - %, I, 1L (xy-x,01)
whenever m 2 m, , Put
(= W= Xy L (it = XD = ik (k= X I, L (3t = 021 )
and aJ, = %(xﬂ-uo s LXpy=%y3) . Thenu 20, w;eG(L),
lay, =4 and (according to (6))

uzm' Z, ~ (u'm.w'm.“‘ hm ©
for all m Zm, ;but this contradicts (5) and hence, the set
N, cannot be infinite.
Now, suppose N, to be infinite. Denoting (=, + U,‘m)
the set on the right side of (4), it follows from (4) that
there are {wy, } c G (L) such that my & U, for every

L]

- 733 -



m ¢ N, . However, Q(L) is linear end- u,, are cones and
so w § !I,‘@xholds for all ar € G(L) and m e N, , It means,

with respect to the- structure of “4@ and linearity of

Q(L) that
1) - - x-%0 > e
: lz-2,1

for all w e Q,CL), 2z€G(P) withlz-x 1£x, and me.
& Hz . Now, in the same way as (6) was proved, we can prove

that
Wz -z - (x-3,, Llx-x,Nl< e lx-x,bs e Iz -2,1

for all z € G.(F) sufficiently near to'z, , say 0< lz-2z,l<
< d" . Choose m, to be x,“<d' whenever m 2z m, and choose
%, € G(F) such that 0 < Bz -z, 0 < x, for everym 2

b4 % .Then Betting
Ctp = Xg » 1o (X~ %o D)

A

Iz, -~ 2, |
we have w7,  GQ(L) and
‘ z“' - za
bz, - 2,1
for all m 2m, which contradicts (7). It proves the first

"w'nl<f’

part of our thecrem.

2) On the other hand, suppose now that there is a li-
near contimaeus mapping L : X—»Y such that (2) holds but
that P is not differentiable at X, . In such case, there

are € >0 andx €X such that X —»X,, X, % X, and
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(8)  NF(x,)~ Plx,) = Lxp=%) 1> Ixy =l

1
for all m-4,2,... . we can assume € < E— . Set g'=

1

=€({-e)(4+0L 1)1 if 1Ll < 7
Ca (- L2MLIA+ILIIT ir Ian>-;-  itis 0<
<cd'<e < -;—. in both cases. The relation (2) impliee

that there is d > 0 such that

(9) ‘C‘fg,CP),zo)c'fcht$=z°+(w(mr+c),
(EZO,”GQr(L)ﬁS,QCB‘,’

whenever O < n € & ,

It follows from X, —> X, and from continuity of F
at x, that there is m, such that I %, -%, < 0" and
AP(xy) - F(x,)l < ¢° whenever m z m,.Set =z, =
= (Xp ,F(Xm ), m=4,2,... 5 then Nz, - x,llcd and s
%y € ?a. (G (F), z,) if mZm, By (9), we can choose
aw, € G (L) with lapl=4, ¢, « 2 with Ie.,‘llcc’ and
n > 0 (it is X, #% x, ) so that

(10) By = Ky + e (W 4oc, )

wheraver m 2 m, ,that is

(11) Ay = Xy + o (4o,
(12) Plxy,) = F(x,) + m (L () + £7)

-73% <



where (a, , A,)=o0c, and hence la, |, (&, < e’ . Now,

(10) implies
(13) Uz”—zoﬂatu.m'c'1—e’)>(amc4—e> .

It holds

1
Lw,) = o L(x,=-%,) =L (a,)

according to (11) and on the other hand, it is

Liw,) = ?;1—(?(&”)- P(x,)) - &,

"

by (12). We conclude from these equalities and (13) that

(14)  DFCx,) = Flx) = L(xp- %, M= bty L (o)t £y Il £

‘M+ 1L 1)
6 Upllle + @, e < -c—-;—;-—- Iz, - 2,1

for all m ?_m,o R

Two cases are to be distinguished now. First, let

ILIs % . Then o= e(4-|k:)-(4-rl'.|..|l)"f and so (14) imp-
lies that

(15) TP (%) = Fxy) = Lx,-%) I< €z, -2,
whenever M,ZM.O . Moreover, it holds

(16) Bx, = xo I 2 WF(X,) = Flx

in this case; in fact, if the reverse inequality were va-

1id then (9) would imply
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FF(x,,) = Pl = UL (xp = %, & VP x) = Flx,) =L (o= %, 00 <

< ellz, -2, ll = € 1F(x,) - F(x,)l

1

aud hence (it is ¢ < ry )

IFG) - Pt < e TL e bty U D=0, 0

which is the contradiction to our assumption. It follows
now from (15) and (16) that

IP(x, )= Flx,) = L{x, =%, < & lx, -x I ;
however, it contradicts (8).

; then (14) implies

[SY N

Now, consider the case ILIl >

e
(17) HF(‘XM)- Flx,)~L(xp~ \xo)ll< I llz,u—zoﬂ< ¢ lz, -z, |

for all m z m, ,If
IP(xp) -~ Flx, ) > Nx, - x, |
were valid then (17) would imply (similarly as above)

L

U= e 20T 0. dxp-x, |

IIF(xw)-P(xo)l < :
and hence by (17),

DF (%) Flixg)- Lx,- %, < ﬁ‘-ﬁ NF(x,)-Flx,)lé € hxp-x,

for m 2 @M, «On the other hand, if
1P (Xp) = Flx, ) & Uy =%, I

were valid then (17) would imply directly
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IP(xy) - Plx) =L - x, <z, - %, I = € lx,-x,1

for m 2 m, .Hence in both last cases, we come to the cont-
radiction to (8), too.-

Thus we have proved that F is F ~differentiable at
%, and F(x,)= 1 . Moreover, since L is continuous,
it is the F -derivative of F at X, e

The proof is completed.

Note that in the case of our example (2.2) (11], it is
% (G (F),€0,0)) «4¢0,0)% and hence F is not dif’erent-
iable at (0,0) according to Theorem 1.

In the seme way as Theorem 1, with evident formal modi-
fications only, the analogical theorem can be proved in the
case that x, is not an interior point of D but that the
intersection of Jat D with every sufficiently small neigh~-
bourhood of X, is non-empty; such a situation occurs in
the case of the differentiability relative to a set. k[ The
F ~derivative of F: X—»Y at x, relative to Mc X (de-
noting by Fy (X,) ) is defined to be a linear continuous

mapping Li: X—»Y for which

1
R FF(x) - F(x,) - Lx=x ) —> 0

if X —> Xq,%,%kxeM.] Hence, the following theorem holds

CFly denotes the restriction of F to M ,spM deno-
tes the closed linear span of M ):

Theorem 2. Let X,Y be Banach spaces,DeX, x,¢D ,

Fi:D—Y &and let McD be a set with a non-empty inte-
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rior. Suppose X, lies on the boundary of Imnt M . Then
P possesses the Fréchet derivative Ty (x,) at x, re-
lative to M  if and only if F is continuous at x, re-

lative to M (i.e., is continuous at %, )

F l“u {x,3

and there is a continuous linear mapping L : X—Y such
that

(18)  ap £, (G CP|), (g, Flatg) = (o Flagy )1 = G(L)

if it is the case then I‘"‘ (%) =L . Moreover, the condi-

tion

1%, Flx, Nt % €, (G (Pll)’ (x,, F(x,2)) € (x,,Flx, 0 + G (L)
may be equivalently written instead of (18).

Remark that if x, is an interior point of M then
0
P4 (x,) is the same as F‘(x. ) and our Theorem 1 is
M 0 0

applicable.

3° At the end of our paper, we look over connections
between our notion of a tangent cone and similar notions of
other authors. The following theorem is the direct conse-

quence of our Proposition 2.

Theorem 3. Let Z be a Banach space, M c Z, zoti
and let LC (M,=z,) be the local closed cone of M at %,
in the sense of Varaiya [9]. If %, (M, z,) is non-dege-
nerated (i.e., if it is the regular conic limit of a quasi-

tangent system of cones to M at 2z, ) then
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€ (M,z,) = z, + LC(M, 2,7 .

Corollary. Let Z be a finite dimensional .space,
N2, z,8 'y and let T(M,z,) be the cone of tangents

to M at z, in the sense of [1). If ¢, (N, z,)
degenerated then

is non-

€ (M, z) = 2, + TN, z,) .

This is the immediate consequence of the preceding theo-
rem and Theorem 2.1 of [1l. Remark that

T,z ) ={z:i2=Um A (2 -2), A >0,z eM,z,—> 2,3

Eventually, we shall discuss a connection with a tan-

gent cone in the sense of Flett [4]; denote this cone by

ClM,z,) .

Theorem 4. Let Z be a Banach space, M c Z and
z, e M . If %¢,(M,z,) is non-degenerated then

CM,z,) c €, 0,3, .

Proof. Suppose that {z,} # G, (M,%2,) § €(M,2,)

then there are 2'c € (M, x,), hz-z =1, and e &(0,1)
such that

19) lz' - wlls>e

for all w € €, (M, %;) , By the definition:of €(M,z,) ,the

re are M >0 and {z,‘}cu\{ %,} s8uch that z, — 2, and

’ . %, - X
z’ s Zy+ A whepe & = m D" ©
~n-y oo |z~_ z°|
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Choose d'>0 to be {m(m,xp)cu%:(‘Eo(M,za))su (see

Section 1°) whenever x & oJ”. It is easy to see that then
€oM,x,)c U , too. Let m, be such a number that m 2 m,
implies 12,-%,ll< d”; then

Zm - %o

z°+é\.-

€ € (M, z)
"z”b- zo

for all A 2 0 and particularly, setting A = 4’  we obtsin
2’ € € ,z)el .
Therefore, there are u’> 0, 2"e€ <£a (M, z,) and c’ 6

€ By such that

I
(20) 2= zy+ @ 2%, w'e’
Mz?- =, )
and hence,
(21) 2= w'+ @’

4

’ [
* ~
Hz? -z ll

- (2"~ z,) e €, (M,z,) We have

’
‘e 2= 2, |l

4
429.

by (20) and it follows now from (21) that
Mz -a’l e ' lc'llce ;

but it contradicts (19). The theorem is proved.

Let us remark that if ¢,(M,z,) is degenerated then
it may be €(M,=z,) 3 € (M,2,) as our example (2.2)
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[11] shows.

Theorem 5. Let Z Dbe a Banach space, McZ, x, € N
and let dim (apM)< o . Then €, (M,x,) = €(M,2,) .

Proof. We shall prove that there is d > 0 for every
€ >0 such that €(M,z,) c Ug (€, (M, 2,)) and
‘C‘,(M,za)cu‘(‘é(l,zo)) whenever x < o, whence the
assertion will follow by the definition of a conic limit be-

cause €(M,z,) is evidently closed.

The first inclusion above is valid for every £,x >0 .
In fact, let it be not true for some €,> 0 and x, > 0 .

Then there is z' &« €(M, x,) such that lz-2z,l= 4 and
(22) 2 ¢ ue, c‘e,‘o (M,2,0) .

By definition of € (M, z,), =z’ may be written in the

form

Z =z, u

. Ep - 2
vhere « = im °

2. eM\4{z,} and 2z, z, .
~— Iz,,-z,l’ 'm 0 o, °

Choose m, 8o that lz,-z,l<x, for m2m, and set
P
zf,, = L+ i 2
Iz“- z, | )
‘\

then z,— =z’ and zg e €y, (M,%,) for m zm, . Hence,

e %% (M, ”o) which contradicts (22).

It remains to prove that giving ¢ >0 there is dJ&'>
>0 such that € (M,z;)) c U (L CU,3,)) forall
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n < d”°. Suppose to the contrary that there are ¢ >0 and
My 0 such that Ky —> 0 eand ‘C&M(M,zo)d: U (€M, 2,))
(m =4,2,..), Then there are zn, € €y (M,x,) such that

nz,,,-zo l=4 and

(23) %, & Uy (€M, 2,))

for all m , We can choose points %, € M by the definition

of ‘C,LW(.M,zo) in such manner that

’

Xy - Zo
2y = za + -n—7—-———-l-l— .
zm- xo
xXn - %
It is —l—=2_ € (S A s M for all m and so there
lz; - 2, 0

z,’,,,“ - 2,
is a subsequence -{z,’» 3 of {z;“} such that {ﬁ-_———}
(s 2!, -zl
m*‘ 0
converges. Denoting by ar the limit of this sequence we can

see that
%, —> Xyt W .

™%
Moreover, (z,+ar) e € (M,x,) because of ““1%- z, Il &

£ """‘b

diction to (23).

—> 0 , Since = 0 , We have obtained the contra-

Note that setting Z =X =Y and M=G(F) where
P: X— Y, we can obtain Theorem 1(i) and Theorem 5 of
Flett [4) as a direct consequence of our Theorem 1 and two

last theorems.
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