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WHEN A GENERALIZED ALGEBRAIC CATEGORY IS MONADIC

Véra KURKOVA-POHLOVA, V&clav KOUBEK, Praha

Abstract: A necessary and sufficient condition for
set functors F and G 1is given in the paper so that a
generalized algebraic category A(F,G) is monadiec, i.e.
it has a free algebra over any set.
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Given functors T, G from sets to sets, form a ge-
neratized algebraic category A(F,G) (see [11,[2],[6],
[7]),[8]): objects are pairs (X,w)‘, where X is a set
and @ maps FX into GX ; morphisms £:(X,®)— (X', @%)

are mappings £ : X—> X’ such that the diagram

FX ————— = GX

e Gf
N ——= GX’

commutes. This notion generalizes the categories of univer-.
sal algebras of a given type A (this is the case G e-
quals identical functor, F is the sum of hom-functors
where o are the cardinals in A ).

Hom (e ,-)
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Another’ generalization of universal algebras is represen-
ted by algebras over a monad. The present paper is devo-
ted to the study of the interrelation of these two gene-
ralizations. We give a necessary and sufficient condition
on P and ¢ for the natural forgetful functor
A(F, G)— Set to be monadic: The functor G is-
representable and F is not excessive (i.e., roughly
speaking, F does not increase powers of arbitrary big
sets).

Generalized algebraic categories were defined by
Trnkové and Goral¥ik in connection with Wyler s paper.
They were invéstigated in a number of papers. We are much

indebted to V. Trnkovd who introduced us to the topics.
I.

We work in the GSdel-Bernays set theory; the class
of all ordinal numbers is denoted by Om , its subclass
of all cardinal numbers is denoted by Cm . |X| denotes
the cardinality of a set X , and if £: X—>Y is a
mapping then Jm £ = {£(x);x € X? .By ordinal m we
mean a set of all ordinals less than m . If m is a
cardinal then m?* is the cardinal succesor of m, cfm
is a cofinal of m , i.e. the least cardinal m such that

m=\J m,; ,where m; < m .
r<m

A category of all sets and their mappings we denote Set .
By a set functor we shall mean a covariant functor from

Set into itself. We denote shortly
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Gy =Hom(M,~): Set —> Set for every set M . Further
Cpq ¢ Set— Set is a set functor which is defined by
Ch1 P=P, CpyX=4 ,  where X %/ ; Cy:Set—
—> Set  is a constant functor to a set M . Let F, G
be set functors. If F is naturally equivalent with G N

then we shall write P =~ G .

In our investigation of set functors we are deeply
utilizing properties of "filters" of points of a set func-
tor T, i.e. ?Fx(a()= {YcX;xeIm FL ;43 Y—X is

an inclusion? where X is a set and x € FX .
We recall some facts about them from [3],[41,[6]:

A cardinal o > 4 is s&id to be an unattainable car-

dinal of a set functor F if Foo % xk(J“ ;.LXJ_,&I’""F{ .

We denote NFX(x)I = min£1¥1; ¥ e £X003 .

Lemma I.1 [6]: Let F be a set functor, X a set X e

eFX . If = I\?‘: () =1 thenetZ4 is an unattainable

cardinal of P .

Lemmg I.2 [4]: Let ' be a set functor, o« be an un-

attainable cardinel of F. Then |Fx| > o .
Let P be a set functor, £f: X—>Y a mapping, X e
€ FX . We are using this notation: £(3;:x(x)) =

={Y’'cY; 3X e £ (), Yo £} .

Lemma I.3 [3]: Let F be a set functor, £: X—Y
a mapping, % € FX then £(&X(x) c FJ(Ff(x)) and
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if there exists Z eﬁ'._.x(x) with £/Z being one-to-one
then £(FN(x)) = £V (PEW) .

Proposition I.4 : Let F be a set functor, «c a sin-
gular cardinal and let there exist some X € Fx such
that sup iz ;xeZf=cc for every Z e 3;'_-“(.)() . Then

1Pl > ¢ o

@

Proof. Let {dj ;i e cfex } be an increasing se-
quence of cardinals with supid;; 4 € cfex 3 = «« . Let
‘L be a maximal subset of {£;f:cfex —> o } ful-

filling the following conditions:

a) d, £ £ =<t for every i ecfec and eve-
ry fe@ ;
) I ImfAalmgl<cf for every distinet

mappings £, g € € .

We shall show that then |¥L| > o . Suppose that I€L| <
€ o ,Let yr:oc—> Ul be a surjection. Define a mapping
Biofx —> o by n(0)=0, h(i)=(supigIL);red; )+
+41 for D<i<cfox .

It is easy to verify that L U { /1 ¥ fulfils the condi-
tions a) and b). Thus a contradiction with the maximality

of* YL 1is established.

Denote B=min{Z; Z € Fp (x)} , PutB=awxf .

For every £ € YL  we choose some QP : < —> B  such
that @, (1) e {£(3)} < & where d;_ei,<d;._+1

and- there exists Z € ﬁ“(x) with ¢, /Z is one-to-
one. For every distinct mappings f, g € YL it holds
P (ﬁ‘;_.“(x)) + % (?F“(x)) becauge | Imfalmgl < cfxc
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and for every Zef;‘(x) supniz; 2€Zi= < .
Lemma I.3 implies F gp (x) # Fgg (x) . Obviously,
IBl=e and IFB| > IBI .

II.

Construction II,1: For any set functor F and arbit-
rary sets M and X we shall construct the transfinite

sequence {W  C(F, M, X) , ¢ € On 3 by putting:
W°=I = €03
msWou(P%xMx44})

Wy =W v ((wa-ﬂk.J“FW'ﬂ)x Mx{ecs1d)
W=UW for every limit ordinal ec .

< pex P
We shall say that the sequence {W, (F,M ,X), < €0On}
stops if there exists some « € On with W¢=W;‘+4 i.e.

P, = U FW, .

Proposition II.2: Let F be a set functor and M Dbe
an arbitrary non-empty set. Then for every set X such
that |PY(>1Y| whenever IY| = [X| the sequence
{W,(P,M,X),xe@n?} does not stop.

Proof follows immediately from the fact that for every
o e0n, I'W;‘Hl Z IFW 1 =>1W_ ] .

Proposition II,3: Let F be a set functor, M be a

set. If for a set X there exists a cardinel 3 such that
BzIXxM| and IPBI£ B then {W (F, M, X),xe0n}
stops and for every «ce On W (F, M, X)) & .
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Proof. It is easy to verify by transfinite induction
that IW | £ 3 for «c<f .We shall prove that FW, =€\§{‘PW‘, .
By 1.2 IFfl=f3 guarantees that (3 is mot an unattainable
cardinal of F . Let xe FW, . Put € = H?Fwﬂ(x)ll then
by I.1 either € £ 4 or € is an unattainable cardinal of
F and therefore & < (3 . If there exists Z e @'Fwﬂ(.x)
such that Z c W, for some d’e 3 then X € FWy, and thus
x € Wp . If for every Z e ?Fwﬁ(x) and for every d'e f3
we have Z - Wy & then there exists ¢: W‘ﬂ—b Bxe
such that ¢/ Z 1is a monomorphism for some Z € ‘5’,’!” (x)
and ‘P(WA’M’WJ) ci{d} % & for every e f3 -
Hence ¢ (Z) is unbounded in lexicographic ordering of the
set € < [> for every Z € ff,}wﬂ (x) . By I.4 we would ha-

ve |FR1 > (3 which contradicts our assumption.

Let P, G be functors, X be a set. The object
(Z,w) of A(F,G) shall be called a free algebra over
X ifXcZ ~and for every f£: X—=Y and every object
(Y,=z) of A(F,G) there exists the unique morphism ¢ :
(2,w)—>(Y,z) vwith ¢/X=¢ .

Proposition II.¢: Let G be a functor with G 4 C

ay't
and G4 §y for every M . Then A(F,G) has no free
algebra over any X ¥ ﬁ whenever F 4= cp .

Proof. If G is not a factorfunctor of some GM then
for every X € GX there exists a4 e GT with Y+ § and
Gf£(x) % 4 for every £: X—Y . Therefore for every ob-
ject (X,0), X % £ there exists an object (Y, = )
such that ¥ %= @ eand there is no morphism £ : (X,w) -
—>(Y,z), Let G be a factorfunctor of QM’ Gz Q“ for
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any N and G4 Cyq - In this case we shall find for eve-
ry set X, X 4 J , a pair formed by an object (¥, z)

and a mapping £, £f: X— Y with the following proper-
ty: for every (Z,w) with X c Z there exist &iff.erent
meppings @, M : (Z,w) —> (¥,z) such that g /X=n/X=

= f ., It means there is no free algebra over X .

a) If there exists x, & GY  such that e Y+ g’é_’(.xo)
y0¢€éy(°<a) y where = N{V; Ve ?GY(.XO)} we
can choose f: X—>Y such that (Y-Im £) e .’féy(xo) .

Let = : PY—> GY be constant mapping to X, . Now, if the-
re exists a morphism 4 :(Z@w)—> (¥,~) such that
XcZ and h/X=f then Im h e ’:";.ywo) . Hence there ex-
ists a, € Imh-Imf such that Imbh-{a,r¥ e

€ %V(xo) . Consider a mapping f2:Y—>Y such that
n(x)=x for xe¥Y-4a,¥},pla)=b, p(b)=a .
Then fpe b I, o h/X=f and pp: (Y,2)—> CY,'E) is a
morphism of A(F, G) . Hence there exists no free algebra

over X .

b) Suppose that there exists X, € GY such that
BV, e ?'ngo) , where V= N{V; Ve ?Gyc.xo)} and
. Yo ,. .
the transformation € : By, —> G , £°(idy )= X, is not
a monotransformation. Let g; Y—>V, be a mapping such that

g,:é:i,d,va where 3 is an inclusion from V, into Y .

Choose a point 2 with 2 ¢ V¥,  and define Yta Vudrd.
Put G(10g)(x,) =1, where 1:V,——V, is an inclusion.
Let c:?}{,->‘G'V,, be a constant mapping to 4, and £:X —

—> V. be a constant mapping to 4* . Then there exist dis-

1
tinet mappings %, R:V, — U  with dih) = k).
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Hence Gh'(4p)=Gh'(y,) where 1/, &: Vj—Uwv {03
W/ Vo= My R/ Vo=, ()= R ()= . If for some
(Z,w), 225X there exists a morphism @: (Z,w) —
—(V;,%) such that @/X=£ then h'egp $ h'sp and
Wog/X=Hieg/X=Ffog'. Further &/, h': (V,=)—>
— (U via},z”) are ﬁorphisms of A(P,G) where 2°

is constant to Gh'(4,) . Hence there exists no free algeb-
‘ra over X .

If G is a factorfunctor of some By and G 4 Cyp, and

G4 Gy for any N then it must hold either case a) or
case b).

Proposition 11,5 [1): Let @ be a set functor,Gzk Gy
for every N. Then A(F,6) has a free algebra over &
if and only i¥ F =4 .

Proposition 171.6: A(F, Gy ) has a free algebra over
X if endonly if W, (P,M,X), «c € On } stops.

Proof. If ithere exists « € On such that %,-H‘ML‘A
then put Z =W, . Define w:FZ—>» @y Z such that
(@(x))(m)=<x, m,dy+4) where X €eFZ,meM end
dy=min{dec ;X e« PWe3 . An easy verification that
(Z,®) is a free algebra over X is left to the reader.
We assume that {W (P, M, X), xc € Om 3  does not stop.
Then by IX.3 IPY! > |Y! for every |Y! = |X| . Denote by
(A,w) a free algebra of the category A (F, 8y ) over
X . Choose arbitrarily some Jh €W, . Define o :FW, —»
—> @, W, such that (@ (X)) (m)=<x,m dy+1 > for
x«pkirw,, , where d:(-m{d'cac; xe€FW,3 and
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(e (x)(m) = ko for x eFW, -ﬂLEJ"PW clet g (A @) —

— (W, e0,) be a morphism of the category A(F, Gpy)
‘such that @ /Wy =gx: Wp—> W, 18 én inclusion. We shall
prove by transfinite induction that Wz ¢ Im @, for every
«,3€0n with {3 & cc . Evidently Wo © Img, for every
xe0n . Llet Bec and Wy c Img, for every g€ 3 .
If # is a limit ordinal, then Wﬂ=fLeJ(3W?* clmg, . If
B=+4. then Wﬂ=W7u((FW9,-J%J?PWd—) x~Mx{3).
Evidently (Im @, @, /F(Im @, )) is a subalgebra of
(W y @) , 80 (@ (xXN(M)Yc Im e 5 ieee Kxym, Iy > €

e Im Pu for every me M, x e}"Wq—Jya_E‘Wdu . Since.

lcl £ 1 Im g, | it follows that IAl 2 lec| for every « €

€ On , which establishes a contradiction.

Corollary II.7: Let ' be a set functor, M be a
non-empty set. Then A(F, ) ) has a free algebra over
X if and only if there exists a cardinal &«  such that
IFcl € oo and < >1Xx<M|.If (¥, w) is a free algeb-
ra over X in A(F, §,) then 1Yl =min41Z1;IF2I<IZ]21X13.

A set functor F is an excessive functor if there ex-

ists a cardinal < such that for every set Y, |FY| > |Y!}

whenever Y| = «

Theorem II.8: Let F, &  be set functors, F 4 Cp ,
Ga Cyy, GCq . Then the natural forgetful functor
0:A(F,G) —> Set has a left adjoint if and only if
F is not excessive and G == QM for some M .

The theorem follows from the preceding propositions.
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Proposition IT.9: If F=x Cy, or & = C,; then the
natural forgetful functor p: ACF, G)—> Set has a
left adjoint.

If G =~ Cg1 then the natural forgetful functor
O0:A(F,G)—> Set has a left adjoint if and only if
Fd=¢.

Proof is trivial.

Theorem II.10: Let P, G be set functors, F 4 Cy ,
64 Cyy, 64Cq. A forgetful functor o: A(F,6) —

—» Set is monadic if and only if P is not excessive

and G =~ @, for some M .

Proof. By a similar way as in [5] it can be proved
that O creates coequalizers for those parallel pairs £ ,
g in AC(F,€@) for which £, 9o has an absolute coe-
qualizer in Set . Thus, in virtue of the Beck’s theorem

(see(5]), O 1is monadic whenever O has a left adjoint.

Remark I1J.11: By a similar way as in II.3 it can be
proved without the assumption of the generalized continuum
hypothesis that every excessive functor fulfils the condi-
tion Ry from [6] for every set M . Thus all the results
concerning sums in ACF,G) from [6] and [1] remain va-
1id without the assumption of the generalized continuum
hypothesis, i.e. the following theorem holds:

Theorem: Let F, G be functors. Then A(F,G) has
sums if and only if

either F preserves sums

or F preserves unions,|G{| =4 and G preserves
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collective monomorphisms

[1]

[2]

(31

(4]

(5]

(6]

(7

(8l

or

or

J'

P.

v.

F is not excessive and € = GM for some M

Gzcaﬂ end P =g orP:.vC’ or (.
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