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ON MINIMAL BREALIZATIONS OF BEHAVIOR MAPS IN CATEGORIAL
AUTOMATA THEORY

Vi&ra TRNKOVL, Prsha

Abstract: Input processes F: Set—> Set , such that

each mapping £: FPr—sy is a behavior map of a mini-
mal machine, are characterized.
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minimal realization. ’ ’ ’
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In the present note we characterize all input proces-
ses F: Set—»> Set  such that each mapping £: F1 — >
has a minimal realization, i.e. it is a behavior of a "mi-
nimal” machine (see [3]).

The note has three parts. In I, we give a sufficient condi-
tion for the existence of minimal realizations in Dyn (F),
F: ¥ — X (see [3]). In II, we apply it to the case

X = Set and solve fully this situation. In III, we give
a very simple sufficient condition for the existence of free
F -algebra over any finite set and for the existence of
minimal realizations of each £3 F®1— ¥ with I fi-

nite.
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I.

1. Let X Dbe a category, F: X— % be a func-
tor. The category &yn (F) is defined in [3] as fol-

x), objects (called F -dynamics) are pairs (X ,d")

lows
where Xeoly ¥, "e X(FX,X) ; morphisms (called
dynamorphisms) €:(X,d)—> (X',d”’) are those morphisms
fe X (X,X’')  which satisfy J o Ff=Ffod . Let
£:X—> Y e a morphism of X, ¢ =(X,d") be an F -ay-
namics. Any pair (9,,0") , where g: o—> o' is a dynamor-
phism and £ factorizes through g ,is called an o -rea-
lization of £ **).
Let (% ,M) be an image factorization system for X (see
e.8.[2]). We say that the o”-realization is reachable if
g € € . We say that (g4,0;) is & minimel o -realization
of £ if it is a reachable o’-realization of £ and for
any reachable o -realization (g, ,9,) of £ there ex-
ists exactly one dynamorphism M : 03 —> 04  such that
hogy =9y -

2. Let € be a class of morphisms of a category ¥ .
A diagram D:D—> X is called an € -spectrum if

(1) D is a thin category and for each ¢, o'’s ot D
there exists o” e 04f D such that Dlo;0”) # F +D (o’ o™ .

i o o o o

x) The categories Oyn (F) are closely related to the
generalised algebraic categories A(F,G) considered
in [1],[53,071,[81.

Here, F',G are set-functors (i.e. endofunctors of Set )
and if G = idemt , then A(F,G) = Qyn (F) .

xx) This notion is a simple generalization of realization of
a behavior map, considered in [3]. Realizations precisely
in the sense of [3] are considered in II and III of the
present note.
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(i) for each morphism m of D, D(m)  is in €.

We say that a push-out

¢

(%) xyf \V

N T

Z

is an ¢ -push-out if o,y € ¢
Let F: X — X be a functor. We say that F preserves
% -—push-outs (or colimits of ¢ -sg_ec;zg) if the image of
each <% -push-out is a push-out (or the image of a colimit

of any % -spectrum & is a colimit of Fe D ).

3. Let €& be a class of morphisms of a category ¥ .

We say that € is factor-admissible if
(a) B,y €% whenever (%) is an ¢ -push-out;
(b) ey, € € for all d € o6 D, where
{W;dow, ldecotyDi>=colbm D, & is an ¥ -spectrum.
We notice, that, for example, the class eft of all epi-

morphisms of ¥ is factor-admissible.

4. Let %€ be a class of epimorphisms of a category
X . We recall that < -factor object of X € obi X is any
pair (g, X’) , where g € X (X,X’), g s ¢, <% -factor ob-
jects (gy,X,) , (gp, X,) of X are isomorphic if there
exists an isomorphism € e ¥ (X ,X,) such that 60g, = g, «
X is said to be <% -co-well-powered if. each its object

has only a set of non-isomerphic € -factor objects.
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5. Theorem. Let (% ,72) be an image factorization
system for a category X , € be factor admissible. Let
X . have % -push-outs and colimits of < -spectra an§ a
functor F: X —> X preserves theme If X is £ -co-
well-powered, then each morphism £: X — Y of X has a
minimal o -realization in fyn (F) for any F -dyna-
nica o= (X,d).

Proof is a routine induction and therefore it is omit-

ed.

6. Proposition. Let ¥ be a category with coproducts,
2 be a class of its epimorphisms. Let L be the system
of'all functors F: % —> X which preserve ¢ -push-outs
and colimits of ¢ -spectra. Then L is closed under form-
ing coproducts over a set. If, moreover, ¥ is complete,
is factor-admissible and each 6 e ¢ is a retractien (i.e.
there exists & morphism w of X auch that o =1 ),
then 2 is closed under forming factor-functors.

Proof. Clearly, Sl is closed under forming coproducts

over a set., et X be complete, ¢ be factor-admissible and
each € ¢ is a retraction., Let F be in 2, »:F— G be

an epitransformation.
a) We prove that G preserves <% -push-outs. Let (%)

be an % -push-out, B: GY—> W , &: GZ—> W be mor~
phisms such that 3o Goc = &F o G~ . Then there exists
exactly one @:FV—> W  such that B o » =pFB ,

Fo», = po P . Now, it is sufficient to show that @
factorizes through »y . Find ‘a:V-—-:-}’ such that

[30(‘0=4v. Then
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@-@oF/’&oP@:fiogyoP@=fch’@ovv .
b) The proof that G preserves colimits of % -spectra

is analogous.

7. Examples:
4) X = Set: Set 1is cocomplete,(eni, mono ) is
the only image factorization system of Set, epl is fac-

tor-admissible and each its element is a retraction.

Lemma: Let M be a finite set. Then Hom (M,-):
:Set—> Set preaerves epi-push-outs and colimi{s of epi-spec-
tra.

Proof. We sketch the proof for F= Hom (2,-) gi-
ven by FX =X =X, ?f: £x£ .

a) Let (* ) be an epi-push-out,f:FY— ¥, ¢ :FZ —
—> W be mappings such that £ Fec =@ oFy ., Define A :
FY— ¥ by M(x) =(£oPx)(x), where x e FX is cho-
sen such that (F(Box))(x)= = . It is sufficient to prove
that (fo Fx ) (X)=(fe Fx ) (X)) whenever (F(fR o)) (x)=
= (F(Box))(X) . Wehave X=<X4,%,7, X=(X,,X,> and
the last equation implies Bocc (X )= oo (X,), Booc(X,)=

=R ec(&'z) . Since (x ) is a push-out, there exist chains

2 2 -—

1,...,tm - .x2

11 - 2
Y=ty bty =X, and Xy =%, ¢

% 3 . 3 i
such that «(t; )= (t; ) for4i odd, o (t))= (¢ )
for i even, 4 =4,2 . Consider the chain

Cxy %y = ) 3,2, Ky Xy Dy eney CER X, = (X609 G5, 8D,
ey $XLL, X,
- 559 -
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b) Let D : D—» Set be an epi-spectrum,
{X;{ecylod €oljD3>=colém & . Then 4, are epi, so Fe,,
are epi. It is sufficient to prove that for each z € Fd(d),
x'e PP (d’) suéh that (Focg)(z) = (Fery )(2’)  there
axists ¢ €0ty D such that D(d,c)+ @ + D(d’,c) and
(FDCEN ()= (FDC G (2’) . Since z=L%,%,2,2'=42,2, ),
we have “4(”4)=°‘w(z—1) . Find ¢y e 0% D such that
(Q(if))(zﬁ:(éb(;‘.:)) (z;) and choose ¢ such that

Dle,,e)# f #Dle,,c) .

Corollary: If F 1is a factorfunctor o. any
#AHM(M“") , where A is a set and all M, are

finite sets, then each mapping f: X— Y has a minimal

o -realization in Dyn (F)  with any o= (X,0") .

B) X = Veel ‘(i.e. the category of all real vector
spaces and all linear mappings). Yect is cocomplete ,
(epné, mono” ) is the only image factorization system for
Vect , epé is factor-admissible and each its element is a

retraction.

Lemmg: If M is a finite dimensional vector space,then
Hom (M,~): Veel —> Teet preserves epi-push-outs and
colimits of epi-spectra.

The proof is omitted.

Corollary: If F 1is a factorfunctor of any
1l Hom (M,,-) , where A is a set and all M, are
a€hA
finite-dimensional vector spaces, then each linear mapping

£f: X—Y has & minimal o -realization in Dyn (F)
- 560 -



with any o = (X, 0")

II.

l. Let P: ¥ — % be an endofunctor, T : Dyn(F)-»
—> X be the forgetful functor, i.e. T(X,d)=X, Tf =¢ ,
We recall (see [3]) that F is called an input process if T
has a left adjoint. Denote it by L : X —> Dayn (F) . Put
PP=ToLl , 1let m : Yoomt — P be the transforma-
tion given by the adjunction. Denote LX = (P®x y Ax) . If
£: %% — ¥ is a morphism of ¥ , then its LX -rea-

lization is called realization only (see [3]).

2. All input processes F: Set-— Set are charac-
terized in [5]. We recall that a set-functor F is an input
process if and only if it is not excessive (a set-functor F
is excessive iff carnodl FX > card X for all sets X

with cord X = 4 for some cardinal number 4 ).

3. Theorem. Let T be a set-functor. The following

assertions are equivalent.

(1) P preserves epi-push-outs and colimits of epi-
spectra.

-(2) For each mapping £: X— Y and each F -dynamjics
o=(X,d) ,there exists a minimal o -realization of £

(3) For each infinite set X , each mapping £: X— 2
and each F -dynamics o= (X,d") there exists a minimimagl
¢ —-realization of £ . k

(4) T is an input process and each mapping
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£:F% — ¥ has & minimal realization.

(5) F is an input process and each mapping
£:FPX—> 2 , with X infinite, has a minimal realiza-
tion.

(6) P is a factor-functor of some Ll Hom (Mg ,-),

where A is a set and all M,  are finite sets.

4. (6)==) (1) follows from I.7, (1)==(2) from I.5,
(2) == (3) is evident. (6)==>(4) follows from I.5, 6, 7 and
(5], because a_.l‘.LA Hom (M, ,-) and ‘their factor-functors
are not excessive, (4)==> (5) is evident. Thus, we have to
prove the implications (3)==>(6) and (5) =(6). Th;ls is
the aim of the rest of II .

5. Let F: Set — Set be a functor. If X 1is a
set, define
X. = U (FEI(FY) .

F f1 Y X
canel Y< carnel X

We recall (see [4]) that a cardinal 4 is called an unat-—
tainable cardinal of F if Xp % # , where card X =4 .

P is not a factorfunctor of any Ll Hom (M,,-) , where
a€A had ’

A is a set and all M, are finite sets if and only if F

has an infinite unattainable cardinal (it follows from the

Yoneda lemma).

6. The proof of non (6)==> non(3): Let F: Set—> Set

be a functor, which is not a factor-functor of any
b, Hom (Mg,~), where A is a set and all M, are

finite sets. Let Y be an infinite set such that Y. + ¢
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(i.e. cord Y is an unattainable cardinal of F ). Put
X=Yuiatl, where @ ianotin ¥, Z =Xx10,1} and
we suppose X n Z = J . Let #p,v : Y— Z be mapp-~
ings given by wy(g) =< 4,4+ >, 4= 0,1 . Let

£:2— 2
be given by £(<a ,12) =4 , £(z) =0 otherwise. De-:
note by K the set of all finite subsets of Y. If X e
€eX , put Z =Xu L(X-X)=x40,431 ,gy:Z— Zy ia gi-
ven by qu({x,4i>) = x whenever xeX,<1=0,4, gy (2)=2
otheﬁise. If X €« X', denote by 9%, : Zy—> Zy,  the
mapping such that gy = 9,’:(, o gy . Clearly, £ factorizes
through each gy . If 4= 0,1, put AP [Py 1CYE)

K, = LF(quow)1(Y) . Thus, if KcX' , then A} =
=[Fq, 1CAY) . sSince o (¥) A ggo, (Y) is

finite, .AT( r\A:‘ =g .

Pat B* = U [Fg 17(R), Bf - o [Fef,17"CAL) .
Then ' nB'= @, By A B} = £ . L:: o=(Z,d) bean
F -dynamica, defined as followa. d(z)=<a,4> ifze3B”,
o"(x)=<a,0) otherwise. We shew that £ has not a minimal

o -realization.

- &) Pirst, we define dy: FZ, —> Zx  auch that ¢ :
: (2,d)—>(24,d() is a dynamorphism. It is sufficient to
put dy (2) =<a,1y if zeBl y Iy (2)=(a,0? " other—
wise.

b) Let (t,o’) be & minimal ¢ -realization of £,
o’=(T,z) . Since t factorizes through each gy , it fae-
torizes through the mapping %h: Z— {<a, 0 ,<a,1d3 0 Y
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given by Alla,i M =<a,i)hay,il=qy it e, 1+ =0,1.
But ifce Yp , then V= [Far;l(c)eA® and (Ph)(c®) =

=[FP(how)I(c)=LFhor,)lle)=[Filc!) , 80 (2o Ft)(e®)=

=(¢eFt)(c") . On the other hand, de’= <a,.0), de’ =
=<a,1) and £(<a,0>) * £(<a,41>), 80 (tod)(c’)s
*(ted“)(c") , which is impossible.

7. The proof of non(6)==> non(5): Let Y,a,X,Z,0=(Z,0),

£ have the same meaning as in 6. Let us suppose that F is
an input process, let |

h N X P@Z — Z
be the mapping such that x o , = <clent, and
x:(F®2,2,) —> o is a dynamarphism. Put

9:F%z 2sz -1, .

Then, ¢ has not a minimal realization in Dyn F , the

proof is the same as in 6.

IIi.

l, Let F: Sel —> Set be’'a functor. If F is an
input process, then for each set X , there exists a free
F -algebra (F®x y£x) over X (i.e. X is embedded in
P"‘x * by the mapping 7 4 : X—> Fox such that for
each mapping £: X— Y and each F.-dynamics (Y, d")
there exists exactly one dynamorphism g : (F®x » Ax) —
— (Y, d") such that g o 7 y=f ). But free F -algeb-

ras may exist over some sets X although F is not an in-
- 564 -~



put process.

2. Theorem. Let F: Set — Set be a functor such
that card Fat, £ 20, 'X). Then for each non-empty fini-
te or countable set X there exists a free F -algebra
(F@x, £y) over X and each mapping f£: FoX — Y
has a minimal realization in Dgn (F) .

Proof. Since cenrcd Fay & ¢, , & is not an unat-
tainable cardinal of F (see [41 ). Thus,

an=m§'4CF-€,n)(FA,,‘,) whenever x°=”§)4A,,L ,
Apm cAyp,q and ip: Ay —> x, is the inclusion. This
implies that the algorithm for the construction oAf a free
F =-algebra over a set X , described in [5], stops at @,

whenever X+ fand card X ¢, .Hence, (F®x, 2y) ‘exists and

-
codl F X £ ¢, . Now, we define a subfunctor G of F

by G(Y) =¢:HZ'..9 (FEY(FK) , Gf 1is a domain-range:
W hond .
restriction of F£. Then GX =FX, ¢%x =rF°x whene~

ver carol X € 3¢, . Since G has no infinite unattainab-
le cardinal, it is a factor-functor of somea_le_lA}{m(Mv-),
A is a set, Mo are finite. Thus, if card X £ ¥,
each mapping f£: Gex =P®x —_— Y has a minimal realiza-

tion in Dyn (G) ,80 in Dyn (F)
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