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A NOTE ON MARKUSEVIC‘ BASES IN WEAKLY COMPACTLY GENERATED
BANACH SPACES

Ji#{ REIF, Praha

Abstract: The concept of MarkuSevil bases is used to
give more elementary proofs of some results on weakly com-
pactly generated Banach spaces.
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Notation: By normed linear space, we shall mean a real
ome, by sp A for a set A we denote the linear spanof 4 , .
7fi A  denotes the closure of 4p A .

For a locally convex space X , by X* we mean the dual
of X (i.e. continucus linear functions en X ).
A Banach space X is called weakly compactly generated (inm
short WCG) if there exists a weakly compact set X.€.X such
that A X =X ,
A biorthogonal system {x; ,f;l; g7 im XxX* (X isin
general a locally convex space) is called a MarkuSevi& bagis
(in short M -basis) if f£3 (xg) = di;  for ;L,g‘.e I,
Aixidier =X , and £, (x)=0 forall 4el imp-
liea x=0. By ar (resp. w* ) we mean the & (X, X*)’
(resp. 6 (X% X) ) topologr. ©¢,(T') denotes the space of

- 335 -



real valued functions x on T such that for each € >
>0 theset {22eT; Ix(z)l >c¢c? is finite, lIxll =
= b;’.ofl« Ix (ol

@ 1is the first infinite ordinal number. For a topologi-
cal space X we denote by wX the smallest cardinal num-
ber % such thet there exists a set Ac X , candA=w, 4
is dense in X , We say that a locally convex space is gene-

rated by A if X= AR A .

Lemma ([1]). Let X be a WCG space, generated by a

weakly compact absolutely convex set X . Denote ? the
first ordinal of cardinality wX . Then there exists a sys-
tem {Pyluges § of linear projections such that [Py ll=
=4, PxKcK , w(FX)=carde for each o« ,
PS--LoLx,PxP,,-P,,anP” for each « €3, B X =
.v;zP_ai for each o« limit ordinal.

Proposition. Let X be a WCG space and X c X be a
weakly compact absolutely convex set zénerating X . Then
there exists @ MarkuSevid basis {x;,f; ¥ e1 of X such
that x;€eX for 1 eI .

Proef. We prove Proposition by transfinite induetion -
on awX .Let X be separable. Then »n X is a separable nor-
med linear space and there exists an M -basis of »n X ,
which is also an M -basis of ‘X (see e.g. [3]). For this
M -basis {x;,fi3 ¢; Wwe can suppose X; € X as X ab-
sorbs elements of A K . Suppose now that wX > ¥, and

that Proposition-has been proved for all spaces Y with

wY < wX , Let {y“}mé“‘f be the system of pro-
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jections from the above lemma. Then Y, = F, X ia a WCG
space generated by weakly compact absolutely convex set

Ko =K, wYy =cadw<wX . Similarly Yg, 4= (Fepq -
- P2 X is generated by weakly compact absolutely con-
vex set Xgyuq = —%(P,_M-P«,)JC for ¢ < § ,
and Y, < wX for all these oc . By the induction hy-
pothesis there exists for each o < ? an M -basis

{“:»5‘:}4;1& of Y with x:er (iel,) .

>

@ @ < &
Now '{x‘i"f.’?”i-‘"rou‘[X‘;’f_‘“(P‘+4-?¢)§.{"1“’w<‘<§

ie obviocusly an M -basis of X and

ot
{&4'}'31“»”‘? c UX, cX .

‘v x<g

~ Corollary 1. A Banach space is WCG if and only if the-
re existe' an M -basis ix3,£4%¢7 of X such that
{x;33¢7 v {07 is weakly compact. The coefficienta {x;f; 1
of such an M -basis in a WCG space X can be found in an
arbitrary weakly compact absolutely convex set X generating
X ..

Proof. The part "if" of our assertion is trivial as X
is generated by {x;%;e1r
Let X be a WCG space and X' be a set as above. By Pro-
position there exists an M -basis -{'x:,,f.;, Yier of X
such that A = {x3};¢; © X . Ve must only prove that the
only - -cluster point of A is x =0 (A is obviously
discrete in w topology). Let x be & cluster pai.ﬁt of A,
and X be the limit of a net {Xpy%pea © A . Then for
an arbitrary 4 eI is Xy 4 Xi for » & », for some
Y, € A . Thus £ (x)= ﬂ:‘rnfi(x,) =0 which implies
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X =0 as4€;% is total on X .

16l
Remark 1. The following two results are due to Amir,

Corson and Lindenstrauss ([1],[4]). However, they used for

their proofs a measure representation theorem and the Stone-

Weierstrass theorem.

Corollary 2. Every WCG space is generated by a set
which is in the weak topology one point compactification of
a discrete set. This set can be found in an arbitrary weak-
ly compact absolutely convex set X generating the space.

Proof. For the generating set take the set ix;3;g1 v
u {03 from Corollary 1.

Corollary 3. Let X and {x;,f;3%:.,17 be as in Corol-
lary 1. Then the mapping T: X*—> c¢,(I) defined by
T(f) = £4x331¢r is a 1-1 linear w*- ar continuous
mapping onto a dense subset of ¢p(I) .

Proof. The ar¥-awr continuity follows from the theo-

rem of Banach-Dieudonné.

Remark 2. Let X be a locally convex space and
{x;,f33¢1 @n M -basis of X such that X ={x;% ., is
relatively wr compact. Then the mapping T : X*—» ¢, (1),
T(f) = {£(x43)3;3¢1 is a 1-1 linear mapping which is
w*- w  continuous on K® ={feX™; J£(4) &4 for
RekK?.

Two following simple examples satisfy assumptions of
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Remark 2.

Example l. Let Y be a normed linear space with an
M -basis ix;, f; 3.1 . We can suppose that £, (I €1
for i € I . Denote X = ¥Y* with some topology which coin-
cides with the duality <{Y,Y* > ., Then {£; x;%#;¢1 is
an M -basis of X .

Example 2. Let Y be as in Example 1. We can suppose
that lIxs ll £ 4 for + € I ( £y can be unbounded).
Let Z c¥Y* be a subset, Z D{f3,%;e1 ,s8uch that ix;%;¢1
is &(Y,Z) relatively compact (for example Z=jsfi£;3;.1).
Denote X =Y with some topology which coincides with the
duality <Y, Z)> .

Theorem 7 of [2] due to C. Bessaga, A. Pelczynski and S. Tra-
janski and Pfoposition 3,4 of [4) due to H. Corson (see Co-
rollary 2 above) combine to give

Corollary 4. Let X be an absolutely convex weakly
compact subset of a Banach space X . Then the space C(XK)
of all continuous (with respect to ar topology on X ) real
valued functions on X is homeomorphic to the space /E, Cf)
where § = w (C(K)) = wkK .

Proof. Denote Y = Ap K , and § be the first or-
dinal of cardinality Y. (There is wY &K .) Let L be
the generating set of ¥ in X from Corollary 2. L is
one point compactification of a discrete set and so C(L)
is homeomorphic to )4?4 (g‘) . (Trojanski (Th.7,021)). As Y

is a normed linear space there exists a set Z = Y* ,
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caxd Z = caxd § , Z separates pointa of Y . Thus we ha-
ve LeX, CCL)= £ (§) and w (C(K)) Z card § end
thus w (C(K))=card § by Stone-Weierstrass theorem. The-

refore C(X) is nomecmorphic to 4 () (Th.7,121).
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