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TRANSFORMATIONS DETERMINING UNIQUELY 4 MONOiD II

M. MONZOVA, Praha

Abstract: This paper is giving necessary and suffi-
cient conditions for non-periodical translation to be de-
termining translation, determining translation being a mem-
ber of exactly one Caleye s representation of some algebraic
monoid. Together with the paper [1] it shows the form of
all translations determining in this sense. In order to pro-
ve the necessity of conditions it contains a number of con-
structions of different monoids.

Key words: Algebraic monoid, Caleye'a representation,’
left translation, right translation.

AMS, Primary: 20M20 Ref, Z. 2.721.4

When dealing with the problem of obtaining an economi-
cal description of a monoid we are faced with several se-
parate problems. One of them is to reconstruct a monoid
when we know the results of multiplication of this monoid
by only one element. In other words, we know one of the
left translations of a monoid. In some cases such an infor-
mation is sufficient to uniquely reconstruct the whole mo-
noid.

Our aim is to describe all transformations which are
determining in the sense as given above. The finite trans-
formations having been described in the paper [1] and the

theorems given in [1] for finite transformations hold also
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for infinite periodical ones. The proofs and constructions
in no way differ from those given in [1] and are not being
repeated in this paper. Thus is here described the form for
all non periodical transformations. To this purpose we are
_constantly using the basic results established in [2],[3]
and [4].

At this occasion I wish to express my thanks to Pavel
Goral¥fk for his kind help and valuable suggestions during
my working at this paper.

Given an glgebraic monoid M =(X,e,-)- & set X to-
gether with an associative multiplication possessing an id-
entity element e, we can associate with every element a &€ X

its left translation

(1) £, defined by fo(x)=a.X for all xeX .

All the left translations of M form L(M). In accord with

the paper [1] we shall call an element @ such that £, de-

termines a monoid M (its operation . and identity ele-
ment e ), a left determining element (or shortly, a determi-

ning element) and its left transiation a determining left

translation (or a determining translation).

If we start from M*® we get the system of all the
right translations
(2) ROM) = {qulaeX?, g, (g)=g.x .
Our aim is to describe all the non periodical transformations

whith are determining left translations of some monoid M

A T-monoid will be a couple (X, S) such that X

isasetand S c X* is satisfying the following con-

ditions:



(1) identity transformation '1x €S ;

(2) for all f,ge S, itis foege S .

A centralizer of (X,S) is a T -monoid (X,€ (8D ,

where

€(S)=fgeX Ifo g mgof forellfeS? .

A point ¢ is a gsource (exmct source) of (X,S) if for eve-
r& x € X there exists (unique) fe S with f(e) = x .,
A T -moneid (X,P) is called a regular T -monoid, if
there exists an algebraic monoid M with P=L (M) ., The-
re is a 1-1 correspondence between regular T -moncids

with marked element e and algebraic monoids.

The necessary and sufficient conditions for a T -mo-

noid to be regular are in the following statement:

Staiement 1l: The following assertions are equivalent:

(8) (X,S) is a regular T -monoid;
(B) (X,S) isa a T -monoid with an exact source;

() (X,S8) and (X,€(S)) have a common source.
The_proof of this statement is given in [2].

A transformation which can be a member of some regular
T -monoid is called a translation.

We bring some notions necessary for a description of a

transformation £, £1 X—> X ., The kernel B4 of £

is

(3) O, = USAIAcX &£CAI= AT .

We shall call £ a transformation with an increasing kernel,
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if £108, is not injective, otherwise it is a trans-
formation with & bijective kernel ( £ |8, is a transfor-
mation g@:Qf — O such that. g (x)=£(x) ). For a gi-
ven x € X the set Pp(x) = {£™(x)Im >0} is the
path of x . The elements x, 4 € X are Eg -eguivalent
if £™(x)=£™(y) for some m, mz0. E; isan
equivalence, its classes being comgonents.oflfx. So we ha-
ve connected transformations (with one component) and disg-
connected ones (with more than one component). An element
x & X is a cyclic element of £ if x & Pe(£(x)) .
The set of all cylic elements of £ forms the cycle of f ,
Zs . The kernel of a component Eglx) is Q¢(x) =

= Q¢ A Ec(x) jthe cycle of a component Eg (x) ia Zg(x)=

=2Z;m Eg(x).If x € Z, , then the order of an element X
is the cardinality »(x) of the set Z;(x) ( x(x)=
=1Zg (x| ). Let X be an element such that Qp(x)# 0,
then the height . (x) of x is defined as the smallest

integer with
(4) f“‘x)(.x) € G‘F (x) .

An element € is a top element of £, if e is a source
of €(£) .

Statement 2: Let £ : X—> X be a non surjective

transformation, then £ is a translation if and only if
there exists a top element ¢ of £ and either Q, (e)=
=0 or £ has a bijective kernel or I£-1(g4®*™(e))n -
~nBa122 forall m >0 .

Let £: X— X be a surjective transformation, then
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£ is a translation if and only if there exists a top ele-
ment e of £ and either £ is a permutation or there ex-
ists one to one transformation ¢ , ¢ € €(£) , with

gle) = £¢e), glter =10 .
The proof is in [2],(3),[4].

Further we shall deal only with transformetions which

are non periodical translations, i.e. Z.(e) = 0.

The main component of £, Eo(e) , will be the compo-
nent containing & specified top element e, X\E,(e) will
be designated by Y .

Let us designate some subsets of X , which will be of
use later: let Qg(e)=0, then XK= Eg(e); let Go(e) %
+ 0 , then

(5) X = ix e E, ()£ e, ()} .

meq

(6) Ty p=4x €E (eINKI£" (x) & Py (e) & £7(x) =

(¢
-i‘“"“mCe)? ) mz0, m>0 .

Let us define & mapping d : K—> Ni:if Qe(e) %0,
then d(x) = m - 4 (x) , where m is the least integer
with £™(e)m £4“%(x) , if Qp(e)=w 0, then d(x) =
=m - m ,vwhere £M(e) = £™(x) (it is quite obvious

that o is properly defined). Such d is called the dif-

ference with regard to e .

It is easy to see that the following lemmas hold:

. ) '
Lemma 1. Let x, 4 € K ; if £d{“ (g) e Fp(e) ,then

A6 A (x)+dk (g

£ (ll*)=£ (e) .
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Lemma 2. Let t e T»ﬂ.q_ , 7 an integer; then

() e Tp,gn for ¢g>an, £Yt)eX for g4 am

AC£¥(t)) = wle)rpn+r-gq -

We shall define a mapping v, b Qe —> @ ,with
MZp = (£12)" ", 80 (E))mt for all t € By and if £
hes an increasing kernel, then Im h n Pp(e) = 0 . The exis-

tence of such a mapping is given in [2],[3],[41.

Following lemmas hold:

Lemma 3. Let Qf(e)sq-O ,teX 3 then

m_ u(@)em
hE (t) € Topactrm °
Leuma 4. Let te T, . ,m # 0 , then
for g>m(e)4m it is ATEXCH™(4) e T,

s Qém=ile)am 3

for g& u(e)+m it is Jv’f“m’m(t) € T¢

+ile)yrm=-q,m °
Let x € X\ @, ,let for S, % is an integer, be

R0+ 0 ana £ =0,

integer & the grade 4t (x)

then we shall call the

of x . (This notion is not
defined for all x € X\ G¢ .) Designate

(7 Asd{xeXIiatix)= 02\{et ,

0 .
= (x) .
(8) Ly #.Jofl X
Lemma 5. Let &,/U"x, At(x) =n ,At(d’)-b 3 then

there exists a mapping ¢, @: L,— L, vith ¢(x)=qg
(9) ?(i(t))_—_-f(y(t)) for all tch\ {ix?
if and only if x = A
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We shall designate by |B!  the cardinality of the
_set B .
Now we give a number of constructions of regular T -

monoids which will be of use in the next.

Construction 1. Let £ be a non sur jective transla-
tion or a bijection, »then for every top element e, e sa-
tisfies the condition from Statement 2, there exists a re-
gular T -monoia (X,L(M)) with feL(M); LM) =
={£f,3;x€X} , where
(100 fy(e) = x
(11) for x € X it is £ ,(t) = £4% 4,

’

(12) for x eTm‘n it is £, (¢) = PRI P

9

for xeY it is £“(t)=4»(.x);
(13) where p:Y—» Y is a trensformation such that
= pn,
£(n(t)) =plElt)) for teY , h(pn(t)) = nlhit))
teYn By

for

Demonstration: Let us define R(M)=4qy lgeXxi,
Oy (t) = £,(y). e is a common source of both L(M) ana
R(M) . It is sufficient to show that £, ¢ g = U * £,

for all x,4 e X .

1. Let xeX , 4 € X, then if t eX , it jg
dix) )
£,0 Q’,‘,(t)-fi‘“)*d"t){’“‘)’ ¥’ £, (t)m q‘v(i (t)).fd' +d'(’#’(,“‘)

- ()
by Lemma 1. If t € Tp,q then £y gy (t)=1, (mrguls w(zy.))=

hg.dtu)fu(c)m(q_) fop

£d-(x)+wco>+4v-¢1. (y) for d(x) & e

- £etlx)‘vq,£»(c)+4~(’*) , It is

g>=d(x),
it i R ol(x)
9’9" fx<t)=q,“(£d'l“)(t)) , by Lemma 2 it is A/ xfu&,”’(fy.)
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£0¥ ¢ > ol(x) ana .f"""e)""'“"“"‘)’*(/y_) for ¢ < d(x) .
Yter, then f0g, ()= £¥p(t) = pE*™(£))  ana
o & (1) = @ (£9%% 1)) = p(£%Yt)) because £4%t) ey |

2. Let xe T, . , 46X , then if t ¢ X , then

£1° ¥y (1) = £, (£ U g)) = 74O ™%y ) and g, o£, (1) =
= By (R E“CH (L) Using Lemma 3 we get o () =

S ADgu@UmASE ) IE t € Tpg , then £, 0 gy (1)
= BP0y < eIy e @) ang it da
}y"**q,—u(e)-mf

““’)*4’(@) for g >u(e)+m and
gffn“'a’*w‘g(g,) for g cwu(e)+m . - £,(t) =
a%,_(hﬂf“'w"m(t)) ,using Lemmea 4 we get for @ =« (el)+m
W‘l-lm-u(e)-mcfa(a)wf»(“’” and hafsze)q-.f».‘.m-g(@} for
2sule)dym IfteY , then f,0q,(t) = £, (plt) =
SO 1)) and g, £, () = CHTECOT L) <

= h“f“ww(‘rp(ﬂ),because 3 ISP

3. The case X eY, g 6 X is evident because of
£4(t) = (x) and Condition (13).

Hence Construction 1 has been confirmed.

It is evident that s can be chosen the identity trans-
formation 4y_ . Now we shall show several transformations 4z ,

ptY—Y with Property (13), # + 1y .

Lemms 6. Let £|Y be a non-injective transformation,
then there exists f:Y— Y, £ 4 4, , satisfying Conditi-
ion (13).

Proof: If £]Y is not an injective transformation,

then there exist %, &Y, x 54 , with £(x)=£(g) and.
one of the following possibilities holds:
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a) in the case 4t(x) and at(g) are defined and At(x)2
Z pt(q) choose 4’1«341:'1—,8'3 ¢ from Lemma 5 and p(z)==z
otherwise;

b) for x € Z, put plx)= f‘h"'(x)-m‘(.x),,km(.x)- m==0,

for £™(z) =x, plz) =z otherwise;

c) for Z,(x)=0 and x € B, choose an infinite se-
quence {x;%._, with x,=£(x), .xhef'b(xo)n Q¢ and
£Xge )= Xg_q and put plzdl=xg for zel, ,
22 mny, p(x) = 2 otherwise.

Lemmg 7. Let £|Y be a disconnected injective trans-
formation, each component of which has a non empty kernel.
If one of the components of f£|Y is infinite or if for so-
me X,,%X, €Y  x(x,) divides r(x,) andx,¢Es(x,),
then there exista p:Y— Y, p % 1y , with Property (13).
Construction 2. Let f be a translation as in Const-
ruction 1 with f(x) e P,p (e) for every x € X . Suppose

that one of the following conditions holds:

(1) there exist x, € (K\NTFe (e))uif(el?, x,,x; €
€ K\ Pele) with £x,) =200y x e £3500 ()

(2) There exist x, € K\F.(e), x,eE (e)\(QpuX)

lixy V¢4

(14) with £-%(f (0N Be# 0

i.e. there exists Xg such that x, e XN (&f uX) with
f(xs>=£d(§h’)+4(‘x2) or fufO’(z) = foL(Kq)i-'f (az) .
Then fe L (M), where L(M) = {£f|xeX}

(15). f;(-(:)=f‘x<-(:) forall x#x, or t*x, ,
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(16) £;2(x4) =Xy

Here the transformations f‘,‘ are those used in Construc-
tion 1. Using Lemma 1, Lemma 2 and Conditions (1), (2) it
can be verified that L (M’) and R{M) (RM) =

= {g,fvlq,fy_(thi;(ry,)}) are the systems of all left and
all right translations of some algebraic monoid, i.e. point-

wise commute and have a common source.
Construction 3. Let £ be a translation with an in-
creasing kernel. Let there exist x, e X\ Pf. (e) with
2
(17) £ (x,) e P€(e) nG, -

Then f & L(M’) for LIM)=4£f] [x e X3} , where

(18) £ (t)=£(t) for x%x, or t=e ,

Al
(19) £, (Dmhf" T ) tor Lk e .
o

Translations f, are taken from Construction 1.
If there exists X, € X \ Ppo(e) with d(x,)=w(e)-2,
we modify Construction 3 setting
(20) f;(o(n,.) = f"‘o ()
for sy e X\{e} with wly) = wle) .
The demonatratién of Construction 3 and its modifica-

tion can be easily done in the same way as in Construction

1 and using Properties (17) and (20) of £ .

Congtruction 4. Let £ be a translation with an in-
creasing kernel. Let there exist x, € Au {f(e)}, x, €

A, 01 (e)+ .
T, Q¢ and %, , %, e £ (0*7¢ Px, NG, with

- 320 -



/at(a(,_)ébt(\xs) . By Lemma 5 there exists a transformation ¢ ,
@: Lx-z"—’ an with (9). Then feL(M’), where L(M’) =
=4£fi lxeX} '

(21) f;‘C'i:)=f‘xC'i:) for.x#L‘xz or t F X, ,
(22) £ (x,) = ¢(x) for ‘XEL"‘Q .

Here again we use the translations f.x from Construction
1.

Using Lemma 3, 4 and the properties of the transforma-
tion ¢ it can be demonstrated that M’ is an algebraic

monoid.

Construction 5. Let f be a translation with |Y| >
=>4, £|Y be a connected bijection. Then fe L (M) ,

LiW)=4£|xeX?
£;(t)-£o‘(t) for xeEy(e) or xeY and te

eEF(e) y

clx,e”)

(23) £5(t)=£ (t) for teP.(e), xeY¥,

(24) ()= B*@(5) for xeY amateY\Py(e);

where e’ is a fixed element of ¥, Bo=hlY, dix,e’) is a
difference of X with regard to e’ ; the translations f.x

are taken from Construction 1.

Demonstration: e is evidently a common source of
both L(M’) and R (M’) ( R(M’) is defined as obvious).
The only fact we must verify is that R (M’) = €(L (M) .
It is evident that £} o q'p‘,-q-',véf;‘ for £ = £y and gy =
= @ . Because of the form of £,£,, g% and Yy Ve
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have to verify only the case xeY¥, g4 e¥ and
L€ Tyt 50 97 ()= £ (£ X W 0ty o prt e

fu,(a)-wm(

x) for diy,e)e m and fuce)+m-w+at(y¢,e)(“) for

"< d'(“é” e’) . 9:*0 f:‘ (f):‘- gry_fhmf“(e)*m(x))= fd-('yne'%bm—p

a(edym

C d ‘)=
£ (x) for m,<oL(ay,e,’) and {“’ e)rm+o(y,e’)-m

(x) for
m = d(y,e’) (see Lemnas 1 - 4).

Construction 6. Let £ be a disconnected franslation
with £]Y being a disconnected permutation formed only by
cycles of finite order. Let there exist a common divisor g ,

qQ 1, ofall x(x), x ey  such that for all x there

is an integer J(x) vrelatively prime to —'—L—é-&?- and
R(X)E(x,)~ g,
) is an integer. Then £ 1is a left transe

lation of the following monoid M/, L(M/)=4fy |xeX? , whe-

re

’

£3(=f~x for x '€ E¢(e) )

dcteln; 41
let er(as_) ,then f;(t)= £ g2 (x) for teE{, (e)
(u(&hm-m«)'—p{;ﬁ'

£ (t)=£ (x) for te T m
, dttay) T
£,(8)=2 (x) for teZ (a;) ,

where {0, %; is a system of elements of ¥ such that for
every g€ Y there is. a; with g €Z(ay) and Z(a;) n
A Z(cu,;)é 0 for L3 ; ny=nlay), ilay)=nyy £, are
the translations from Construction 1.

Demonstration: The fact that for every x, 4 € X

£ gy (£ =gy (EL(£)) ( ¢y (£} =£{ () ) will be shown
only for xeY,4e€X, teY , The rest is an easy compu~-
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tation.

Let x e Z(ay), yeEs(e), teZlay) , then £,(g,(t)=

diy,e) Mg oz, as) 4 4
= £(¢ ey g R (x)

‘ Ry Mg Kpdyg
where d,(z,a,s-‘)= d,(t,a,é>+d.c,v,,,;__9v__t ,._;%_3.=,%9,+4

( £, is an integer) and thus d.(x,a,é)zd(*t,a,é)af-d,(ay,e)qf-

Aoy
dtt,ag.)-:{;—"“
+ R qd (y,e) , therefore f; (g.’?ct)) =£ (
) L1
diy,e) % dot,a)y—s—
(£ T x)) g (£ (D) = g (€ T T (x)) =
iy, EETE et ag) itk
= (£ . (D()) .

For o €Ty, n and g e Z(a,) it can be shown in the
fy vy~ Q

same way using the condition 2

= & for all 4 .

The last part contains several theorems which give us
the answer a5 to the form of translations which are deter-

mining translations for some monoid.

Theorem 1. Let £ :X—» X be a connected non-perio-
dical translation with a bijective kernel; £ is a determi-

ning translation if and only if the following conditions

are fulfilled:

(i) there exists exactly one top element e in X ;
(ii) £(.x)sP.€(e)u0,+. for all x € X ;

(iii) for all x € (X\ ?‘F(e)) vifle)t end for all

(23) g eX\ (O, B (e tis 167" 0= 1
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for all x e T, .\ @, and 4 e X\ (P (e)u @) it is
(24) e~ em™ 84yl =1 .

Proof: At first we show the necessity of Conditions
(i) - (iii). The condition (i) is evident; if we choose
“two different identity elements, we get two different mo-
noids. |
In [2] there is described a commutative monoid cont-
aining a connected translation £ . It is evident that if
there exists x, € X  with £(x,) ¢ Ps(e) u B¢ , the
- monoid from Construction 1 is not a commutative one.
Let the condition (iii) not be fulfilled, then there
exists & monoid M’/ with L(M’) from Construction 2, which
is different from the monoid M  described in Construction
£ 58
Now, we are to show that these conditions are also
sufficient. From the condition (i) only e may be a source
of L(M’). and R(M’) of any monoid M’ with fe L(M"),
The first step will be to show that all translations of
- R(M’) are determined on Pp(e) u @4 . Let R(M‘) =
=1gfy |4 € X3 .Tet t e Pp(e) , then gy (B)m gy (67 (D) =
= £9(g (e = £¥Pg) . Let teBp,te Ty, , i
£70E)= £ (e) , then £7(q/y (£))= gry (£™(£)) = giy (£““Ye)
= 5“'(”(:;‘.) , hence g,',*('l:) ef’“’(f“'(",(@)) . Because of
the commutativity of ¢/ and £ itis g (Gy) = Q¢
(the proof of this assertion can be found in [61). So
9’,‘_(*) e @, ,but £| 8¢ is en injective transformation
and g (1) = ¥4y
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Further it can be easily shown that 9:,, (t) = £(1t),
()

where

(25) Y, = £(e) .

Using the fact verified above we can easily see that
£5()=£*(x) for teX ,sl(t)= HE“x) for
teTom -Using Lemmas 1, 2, 3, 4 and Condition (ii), we
get £408) = 2™ (t)  ana e = WTEC Sty
*x € To m , if one of the elements x, t is the element

of P;(e) v Qf. .

4 -

To see that £, , g7  must be equal to translations ,
from Construction 1 it is sufficient to show the form of g4
for a4 eX\N(BpuTPple)),teX\(Qp uPpa(e)) . The rest
is an easy consequence of the equality gf”_Cx) =f; (g ) and
the condition (iii).

Thus Theorem 1 has been proved.

Theorem 2. Let £ :X—>X be a connected surjecti-
ve translation, then £ 1is determining if and only if
X1 =14 .

Proof: Bijective translation on X with (X| > {
has more than one top element. An increasing transformation
ie a translation if and only if there exist e € X and .
g:X—> X, e 1is atop element of £ and g & €(£),
with g (e)=£(e) and 9,’4(3); 0 , but they are never uni-

que.

Theorem 3. Let f be a connected translation with an
increasing kernel Qg 5 X\ Q¢ % 0 . Then £ is a determi-

ning translation if and only if the following holds:
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(i) there exists exactly one element e , with w«(e) = u(x)
for all x € X and such that for all 4 > 0
£ "M e)) n (B NP (e % 0 .

(ii) The xernel G,  is isomorphic to the connected trans-

‘lation of the bicyclic semigroup.
(iii) For all xeX it is £(x) e B (e) .
(iv) For all x eK\?‘F(e) it is d(x)=< w(e) -2 .

(v) For 811 x € K\ Po(e) and te (K\Pple)) uifled}
itis 1£71£%P* (x)) A X1 =15 for all xe ANK
and t eX\P Ce) it is e (s M O)NR e)n Q1= 1.

(vi) For all x e A v if(e)}, g eTyqy \ Qp if
L€ Sl ma i SV IN G, ,then at(z) < st(y) .

Proof: The first step of the proof is to show that
the conditions above are necessary. Condition (ii) involves
existence of exactly one h : Q,—> Q. \Pr(e) with
£(H(t)) =t forall te 8, . Necessity of the condi-
tion (iij) was settled b& a construction of another algeb-
reic monoid M with fe L(M) in the case f(x) € F.Ce)
for some x e K (see [4]1).

Let there exist x e K\ Py (e) with fq'(xo) €Pele)n
n Qg . The monaid M’ defined in Comstruction 3 is dif-
ferent from M from Construction 1.

Let us suppose the condition (v) is not fulfilled. We
use Construction 2; if there exist x €e K\ Po(e) and
te(X N\ Pp(eNudfiert with If (¥ N (B (e n

n Q_F) | > 4 , it means that there exist X,, X,, X, with
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the property (1) of Construction 2; if there exist x e A
and t e X\Pp(e) with €N (Brern 81 > 1
there exist x,, x,, X, with the property (2) of Const-
ruction 2. In both cases Construction 2 gives us an algeb-
raic monoid different of M from Construction 1.

Using Construction 4 in the case when (vi) is not ful-
filled, we verify the neceasity of the condition (vi) and
the proof of necessity of Conditions (i) - (vi) has been fi-
nished.

Next let us show the sufficiency of the conditions sta-
ted. Our aim is to show that every algebraic monoid M’/ with
£e L (M) has the form specified by Construction 1.

Let us suppose we have some M’ with £e L (M) ;'
LIM) =4£) |[xeX? and R(M) = -(9',,_ |y € X3y it is evi-
dent that only e can be a source of both L(M”) and
R (M’) ., Proceeding in the same way as in the proof of Theo-
rem 1, we get gy (t) =£*®(y)  for all teX . Because
of the condition (ii) we can designate xe Qe n Tp,q M
Xp,q » because of lQF N Tﬁ,q_l =4 .

The following step is to show that for all g e R (M)
(26) §lxp,q) & Pole)

Let first g(xy4) = Xp,0 » then G (Xpg)=Xo g4 for all
&z 4 and g(x3p) = Xi,q,0 forell 420 (use commu-
tativity of g and £ ). It is easy to show that for
FTeL(M) and G 6 R(M) with Fle)=G @)=y repp it
in FlXouterst’ = G(xo,utervq) = Xo ucer+2 - Using
commutativity of ¥ with § weget Flx, Y=,  and
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F(xyp) = Xop ,thus £(E(xp ) =ECE(Xg5,0)) = Xg - For
every t € @, there exists a translation 9 in R(MY)
with F(xg,) =t , s0 £(E(L))=F(£(t)) =t for all
teQp , i.e. £|Q@, is injective and it is a contradic-
tion.

It is not possible for q:,% (yyo=F(e)) to find m =
z0 with 9:4"0(%,4)=°‘m,0 and q.',%(x&‘,) = Xg44,4 for all
S =0,4,...,m =4 | because of 'g‘.”“’(gf,,‘,d)mqe]l(}d’) . Simi-
larly if for some 4 , 9:1}("‘41:9.) = Xg,a ,then
@“gf,}(qfv,o)’ﬁf"'(xm) =Xy for @“’9:*(93%)%?1‘ RIMD,
It leads to a contradiction. So for all ¢ & R(M")

G (Xp,g) & Pale) .
We know already that qf,}(t) =£d“)(fy.) for teX , Let

b= Xn,g o then G (xpon) € £ M My (G, B (D),

i.e. = O )

Ty Xpyoud) . (Use induction on ¢ ).

As in the proof of Theorem 1, we have established the
form of 9'1'% y %o =£(e) ,Now we must show the form of 9,',',0
in teX\ (Qpv Pr(e)) . From the conditions (iii) and

so) 2 act)
(iv) it follows gy (i) = £ = (qp) = £(t) for all

t € X . Using the condition (vi) and induction on a(t)

we get gf,,nct):hg‘f“(‘)*“(r%) for t ef o\ Gg . We shall

show it only for t with 4(t)=4, the rest is obvious.

G ECEN=£(Qy (+)) = Xpyg,qq , because of £(4)=Xp g4
and g -1z 13 i.e. gy (t)e~ip¥ g @ +nelgyy |

By
the condition (vi) if » -f"‘(h”"’f‘““""”(r%)) , 68, ,

then st(x)< At (t) and there is no transformation ¢ ,
@:Ly—> L, with (9), by Lemma 5. So the chaice
g:,%C{:) = % ie not possible,
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Let us turn to the form of £3 € L(M’) , Using commu~
tativity with g7, , we get £, W)= AEE4@H () | further
-take g ¢ A , i.e. there exists 4'e X with £(q’) = 4 ,
then £ (g )= £5 (g, (£ (@)= Gy (£7(gy (€D = gy (g, (x3) .
For xeX it is fd'("')(ny) and for x € Ty, , it is

» hg_fu(e)-”-.....ﬂ(*,) - /hq'f“(w*”(@)

To show the rest, the form of 9,’,* for A , we
use the conditions (iv), (v), (vi) and Lemma 5 and proceed
as for the translation 9‘:%9 . So we have that every L (M)
containing f have the form (10) - (13) of Construction 1.

Thus the proof has been finished.

The following theorem deals with disconnected transla-
tions. It holds also for the periodical ones.

To our regret, the analogous condition in paper [1] has
not been stated correctly and needs to be given the above

form.

Theorem 4., Let £: X—> X be a disconnected transla-
tion. Then f is determining translation if and only if the
following conditions hold:

(1) £1|Eg(Ce) is a determining translation;

(ii) Y has at most one element or £]Y is a-disconnec-
ted permutation with Y < 2. ;
nix) does not'divide x(g) forany x,g4eY ,

x & Zlny),
(iii) if 9, 9 # 4 ,is a common divisor of all x(x) , xe.
€ Y  then there exists x, € ¥  such that forall f .,

n(xg)

3 are relatively prime ,

where f and
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n(xdp-g,
9'2
Proof: Necessity of the condition (i) is evident (see

is not an integer.

Construction 1 and Theorems 1, 2, 3).

By Lemma 6 £|Y is an injective transformation. From
Lemma 7 and Construction 5 it is obvious that the condition
(ii) is necessary if there is no x in ¥ with B¢ (x)=10.
Let there exist x‘ €Y, Bp(x)= 0. Injectivity of £1¥

gives another top element e’ of £ .

The necessity of the condition (iii) follows from Con-
struction 6.

To finish the proof we must show that the conditions
stated are sufficient;it will be done if we show that every
L (M) containing f must be equal to L (M) from Con-
struction 1.

Let there exist M’ with £ & L(M'), LIM)=4{£} |xeX},
RN ,-{9,’,”@:1(3 . The source of both systems must be
the only top element which satisfies the condition (i) from
Theorems 1 and 3. We shall designate it by e, £} IE%(G) and
9y |Ep(e) ,for x, yy € Eg(e) ,have the forn ag gpeci-
fied in Construction 1 (see Theorems 1, 3).

Let teK ,qe¥ , the g€t =l s oy
d'“w‘(q.) ,hence g, (t)e £HELDH sy ,:u:h £
s ut. £]Y

ait) .
() for all yeX

= £
is a permutation, so 9’“('&) =f
teX .

H

Let teT €Y , then gimilar ’
2 wl@lrp me s ¥ ’ W gyct) =

@1 f(y) = MOy for

€ X
330 - ¥ ;te’I‘mi.



If Y has exactly ane element z, g, (t)=2% for
all + and fL(t)=2x , i.e. M’ is equsl to M .

Let Y have more than one element, then f£|Y ig a
disconnected .permutation. If we show that gvfy.)Y=4y for all
a4 € X , the praof will be finished because of
(28) £, () = x
for all e X and xe? .

With regard to (26) and (27), M’ is equal to M .

Now we show that 9y 1 Z(x) = (£ 2 (x)™  for some
o = 0 . If there exist X, , 2, €Y with x, € Z(x,) ,.
s (xod = %, , then £(g4 (£ (x0)) = ¢y (xp) = 2, =
- f"'("")(xp) , iee. n(xy)=m.,n(z,) and this is a contra-
diction with the condition (ii).

Hence g3 (Z(x)) € Z(x) . From the commutativity of g,
and £ , we get g«;[ZCx) = £h}Z(x) .

Providing that there exists g, such that g; |Z(x) =
= t®|Z(x),0<h <n(x) for some x €Y , we chtain that
9:1; |Y is a disconnected permutation and has cycles of the
same order. Now we shall show that also gy, |Y ie not an
identity transformation (4, = £(e) ). Let 2 €Y be an
element with g-'q,p ()= 2z ; then for all y €Y it is
g:“_a( )= 4 .(The last assertion follows from the same rea-.
sons as that all cycles of in have the same order.) Be-
cause 0f Qn,(Eg(e)) c Egle) we get 2, (Eple)) = {2},
x €Y . Therefore £, of = £, and hence |£5(Z(zNl=1;
but ¢, |Z(z) = £h]Z(z) ,thus @’y does not commute with
£,

Hence 9:,*0 |Y is a disconnected permatstion having
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all cycles of the same order; we shall designate this or- ‘
der by g . It is evident that q is a common divisor of

all niix) , x€Y .

Let there exist z e Y such that for all g , where

k(z)
4 and ) are relatively prime,
2.n(z)-q

(28) is not an integer.

2

’ - . s .
We may suppose that. g, |Y= q,v,ol}’;m. case this supposi-
tion does not apply we take 2= Gy, .(gy)" (e) , where
()™ Y = 4y . It ias obvious that z’ has the property
(28). Let us take x € Y with Q—,x 1Y = g.fh |}¥ . Then for
-4 ) sy s
t =£b(x) @) , vhere gf,(]Z(z)r_-fM”' IZ(z) it is

£ (g, (69) = £, T 00 2 6,0 1) = () (g (N =

: ’ ’ fo (2 Cg-1)
= (ga)%(x) and g (£4(E)) = g (4 Cgl ) (ed=

-1 @) g-1)+1
= 9 llgy P F Ty = ()T
Therefore & (z)(g-1)+4~g=mg ,uhere m 1is an integer,
i.e. &(x)-1=aq , where ¢ is an integer.

)
Simultaneously k(x) is such a number . that ;e“(" )Z.( )

has cycles of the order ¢ ; thus h(z)= _4%2_1_ , where
2 (z) .
4 and ;’ are relatively prime; in other words the-

re is a number f with (28). This is a contradiction with
the condition (1ii).

Thus the proof of Theorem 4 has been accomplished.
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