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Abstract: The third boundary value problem in poten­
tial theory with a weak characterization of the boundary 
condition is investigated for a general open set G c X/m/ 
with a compact boundary 3 . No a priori restrictions on 
G- (like finite connectivity) and B (like smoothness) 
are imposed. 
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Let S be an arbitrary open set in X/m'f m v > 2 , and 

suppose that its boundary B * 5 \ S is compact. Let us 

denote by *£y the Banach space of all signed Borel measu­

res with support in B (the norm II... II in & being given 

by the total variation). Given $4, e & then Up* will de­

note the Newtonian potential of <ĉ  corresponding to the 

kernel J(i Cz) = /mi. - 2 . Let A m & be a fixed 

measure ( > 0) with a finite continuous MX and associ­

ate with any (JU c «8* the distribution T defined over 

the class ]) of all infinitely differentiable functions $p 

with compact support in Jf"* by 
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If 3 is a smooth hypersurface with the exterior normal m, 

and 0* denotes the area measure then, under appropriate as­

sumptions on (O/ and X , T(it represents a weak characte-

£UfC cLX 
rization of — -*• —rr— VL*JL • This fact gives a 

motive for the following formulation of the Robin problem 

( « third boundary value problem) for the Laplace equation 

(cf.t5],C8] ): 

Given o> B *£r f determine a ft e & such that 

(1) Tp, m i> 

in the sense of distribution theory. (For X = 0 this redu­

ces to the Neumann problem as treated in [13,12] ^Proper­

ties of the operator T: <U/ »—* Tp, were investigated 

by I. Netuka (cf. t5],[6] ) who obtained (without the simp­

lifying assumption on continuity of U % ) necessary and 

sufficient conditions for applicability of the Riesz-Schau-

der theory to the equation (1). 

In order to describe the relevant results we first recall 

the following notation introduced in [2] - C43 . Given 

8 e r « 4eelt/m'; 181-41, xetr* and *, > 0 let 

nfi^Cfl,x) denote the number (06 m,K Cfl, x) £ + oo ) of 

all points ^ c S » U + y 0 - , 0 «< g> < /& ? such that 

every neighborhood of y , meets both S n G and S \ G in 

a set of positive linear measure* Then the integral 
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/ir^Ca) s J m*Ce,x)d6(9) 

i s meaningful (more prec ise ly : 0 i—* m ^ C ^ x ) i s a Bai-

re function whenever <? i s a Borel se t ) and we put for 

J4 c B 

V. ( A ) » Jtimu AXUU nt^(x) 

I t appears that 

(2) V0
GCB)< + a> 

i s a necessary and suff ic ient condition for v a l i d i t y of the 

inclusion Tift- c ©6* « In what follows we always assume 

(2) which guarantees the existence of the density 

a t a n y x t B , Put A * j die, B^«<*eB>dCx).r£"*i,fc«0,4 

I t follows from the r e s u l t s of I . Netuka (cf. C6]) tha t 

(3) Yo(3Sk? * * k> * m °> * 

is a necessary and sufficient condition for the existence of 

continuous functions £4, on B and signed measures j>±e, & 

(<L ** 4 f... 7 m>) such that, for suitable ocejl >*(0$ , 

where I stands for the identity operator on & 0 Accord-
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ingly, under the assumption (3) the Riesz-Schauder theory 

applies to the equation (1) rewritten in the form 

£ I • tacT'CT- 1*1)3(0, m txT*» . 

Our main objective in this note is to describe the 

range of T under the conditions (2),(3) solely (which was 

done in £71 for a connected S ) without a priori assumpt­

ions concerning connectivity or finite connectivity of 6 . 

(It should be noted here that 6 may have infinitely many 

components even if (2),(3) hold.) 

Theorem. If G fulfils (2),(3), then Tift' consists 

precisely of those -P e >£r such that v(K o B ) « 0 for 

every bounded component X of (T satisfying 

XCX. n B ) • 0 -

The proof of this theorem rests on the following 

Proposition. Let C be a Borel set with a compact 

boundary A and suppose that every open U c JJ"* with 

U A & 4* 0 meets both C and Rim' \ C in a set of 

positive volume. If Y0 Cfl) <. -z A , then C has only 

a finite number of components and their closures are mutu­

ally disjoint. 

A detailed proof of this result will be presented in 

a paper to be published in Czech.Math.Journal where fur­

ther comments and references will be given. 
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