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Abstrgct: This communication contgins a brief discus-
sion of the main result of the authors paper: "On the solu-
tion of the traction boundary-value problem for elastic-in-
elastic materials", to appear in Archive for Rational Me-
chanics and Analysis.
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Introduction

Among attempts to formulate the theory of inelasticity
adequate td real materials, a successful model of inelastic
solids has been suggested (see e.g. [1 - 5]). The model is
based on the concept of internal variables. Unlike the clas-
sical plasticity, the internal variabae model comprises a
wide range of meqhenical properties: elastic, plastic and
inelastic behavior, the rate and temperature dependence of
stress-strain diagream, creep and relaxation effects.

In this note we briefly discuss internal variable model

from the mathematical point of view. The formulation of a
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boundary-value problem and a sketch of the proof of the ex-
istence and uniqueness of solution for the internal variab-
le model (for details of the proof see [9]) is illustrated
here by the traction problem. The method of proofs of the
existence and uniqueness of solutions given in [10, 1131 is

a modification of the method suggested in the paper [91] .

Formulation of traction-boundary value problem

We consider a body with generic points x in the time
interval t €<0,T) .In traction boundary-value problem we

. . e
look for the symmetric elastic strain tensor e&='(ai'u:ish2ﬂ’
’

the symmetric inelastic strain tensor Qﬂ==(e:;h the

a=1,2,3

symmetric stress tensor 6 =(6,,).

%3 %,521,2,3 ) and the structu-
] 149

ral parameter vector o« = (et,;) m8uch as e,, & ,6 €
4

4[,’
€C0,Ty , [L, (1%, and weC(<0, T, [L,c0)1™).

iad,..

We require that ¢_. ¢ 3

e’ &py O, and o satisfy the fol-

lowing conditions:

(i) The condition of compatibility

(1) €+ e, =€, ee€k ,

where X is the linear modul of S defined as the set of
€(v)= (qu&/ax‘-_-q- dv; /3x;)/2 . By S we denote the

subspace of [L2(11)19 of symmetric tensors with the

scalar product

(6,%) = fm(se)dx .
2
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(€)]
nr: are from the Sobolev space W2 ()Y of L

% func-

2
tions with 1’..2 first derivatives.

(ii) The equilibrium and boundary conditions

(23 ftrc(o’&(nr))dx-)[}‘ard.x-f gvdS=10
Q rJ°}

“n
for every t from <0,T> and every v from [W, 1.

The given body forces F = (Fi)i,..f 2,3 and surface tractions
%y

9= a0y nas FeCKOTY, [L (1), e CLO,TS

[La(a_rz)f) , must satisfy the global equilibrium condi-

tions

(3) Fd oS =0
fran o [ o = 0

(4) F dd ( YdS =0 .
.Lx‘x x-o-J;n Q@ > X

(iii) The constitutive equations

(5) e-ez A(B’, ) y
t
(6) € (t) - €, (0) sfoB(s('z),co(e))aLc ,
<
M < (4)- x(0) = [ClO(r), x(e)de .
0

We assume that the response functions A ,B and C are
lipschitz~-like continuous and that there exists a function
P(G’, o) with lipschitz-like continuous first derivati-

ves with uniformly positively definite second differential
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in € .

Existence gnd uniqueness of solution
In the paper [9] , the following theorem is proved:
Theorem. Under the conditions mentioned above there

exists a unique solution of the traction bdundary—value pro-

blem for the internal variable model.

Sketch of the proof: Let & be in C(< 0,6 > ,
[L,_(.Q.)l9) with d° enough small. It follows from (6) and
(7) that the mappings € > En and 6 —» o« are contra-
ctions. Let us look for w(t), t 4 <0,d> , which‘ sa~
tisfies the equilibrium and boundary yﬁndition (2) and the
compatibility relation (1) written in the form (see (1),(5)
and the definitions of § and K )

(8) f;n{[% (@,0c(6)+e,(6)] m}dx=0,

where h e H ,H= S = X . But w(t) is defined by (2) and

(8) uniquely and we can find it by winimizing the functio-

- nal

9 [TPCw, x (e + txle, (6)w)ldx
Q

in the space of functions satisfying (2). The conditions of
coercivity and convexity for the functional (9) follow from
the hypothesis. These conditions imply that the mapping

&+ @ is contractive, hence we obtain a unique
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fixed point. By a finite number of steps, replacing the in-
terval <0,d"> by <R, (+1)d > , we obtain the

Theorem.
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