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Abstract: This communication contains a brief discus­
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Introduction 

Among attempts to formulate the theory of inelasticity 

adequate to real materials, a successful model of inelastic 

solids has been suggested (see e.g. fl - 5]). The model is 

based on the concept of internal variables. Unlike the clas­

sical plasticity, the internal variable model comprises a 

wide range of mechanical properties: elastic, plastic and 

inelastic behavior, the rate and temperature dependence of 

stress-strain diagram, creep and relaxation effects. 

In this note we briefly discuss internal variable model 

from the mathematical point of view. The formulation of a 
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boundary-value problem and a sketch of the proof of the ex­

istence and uniqueness of solution for the internal variab­

le model (for details of the proof see £91) is illustrated 

here by the traction problem. The method of proofs of the 

existence and uniqueness of solutions given in £10, 111 is 

a modification of the method suggested in the paper C 9 3 . 

Formulation of traction-boundary value problem 

We consider a body with generic points a in the time 

interval t € <0,T> .In traction boundary-value problem we 
e 

look for the symmetric elastic strain tensor ee~ Ce^.)^ -4 2 3 « 

the symmetric inelastic strain tensor e* = ̂ alt -mil* * t h e 

symmetric stress tensor &= (.&..). . , „ „ , and the structu-

ral parameter vector oc * Coc.). ,, _ .such as 6-, tM < & e 

e C ( < 0 , T > , C L a < A > l 9 ) , and «. e C<< 0,T>, CL f̂ A ) 3*) . 

We require that C_ , 6_ , 6* , and ©£, satisfy the fol-

lowing conditions: 

(i) The condition of compatibility 

(1) ee + V * e > * « * » 

where X i s the linear modul of S defined as the set of 

zCnr) B (dnr±/dxi+ dnr^ / < J « ^ ) / 2 . By S we denote the 

subspace of Z1 

scalar product 

a 
subspace of CI#2<iL)2 of symmetric tensors with the 

C6% x. ) * ft/cCer-t^dx . 
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(4) 

nr^ are from the Sobolev space W^ C SI) of L* func­
tions with Lg, first derivatives. 

( i i ) The equilibrium and boundary conditions 

(2) Jt/t (ffe, (nr))dx- f F<wdx - J <^ir<iS » 0 

for every t from < 0 , T > and every or from TŴ  Cil)3 

The given body forces F = ^ 4 , ^ 4 2 g an<* surface tractions 

9 - - < 9 * ^ . 4 , . , , . r « C « 0 f T > , £ L a < i i n \ * . C < < 0 , T > , 

[ L f t O J 2 ) 3 ) , must sat isfy the global equilibrium condi­

tions 

(3) fTdx + f <frdL& » 0 
'£& 

(4) f r x o c ) d x + f C o , x , x ) < i S » 0 . 

(iii) The constitutive equations 

(5) e e « AC6-, cc) , 

„t 
(6) e ^ t ) - e^CO) • J B t y C t ) , * ^ ) ) ^ , 

t 
(7) ccCt ) -ooCO>« fCCtfC*), ec,C<e>)<i<fc . 

J0 

We assume that the response functions A , B and C are 

lipschitz-like continuous and that there exists a function 

P(G%ot) with lipschitz-like continuous first derivati­

ves with uniformly positively definite second differential 
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in 0 . 

Existence and uniqueness of solution 

In the paper [91 , the following theorem is proved: 

Theorenu Under the conditions mentioned above there 

exists a unique solution of the traction boundary-value pro­

blem for the internal variable model* 

Sketch of the proof: Let & be in C « 0 , e > , 

9 
LL aCH)} ) with cf enough small. It follows from (6) and 

(7) that the mappings # t—»- e ^ and G i—*• oc are contra­

ctions. Let us look for <y(t) , t * < 0 , of > , which sa­

tisfies the equilibrium and boundary condition (2) and the 

compatibility relation (1) written in the form (see (l),(5) 

and the definitions of 5 and X ) 

B F 

(8) /t*{[-jj—(cotoocev + i^ce)] H] dx - 0 , 

where J b c H , H « S « & - X . But <a(t) is defined by (2) and 

(8) uniquely and we can find it by minimizing the functio­

nal 

(9) J CTCco, «,Ctf» + t/cCg,^ (e)a>)ldx 

in the space of functions satisfying (2). The conditions of 

coercivity and convexity for the functional (9) follow from 

the hypothesis* These conditions imply that the mapping 

€f i—»> co is contractive9 hence we obtain a unique 
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fixed point. By a f i n i t e number of steps, replacing the in­

terval < 0 , c T > by < Jk,cT, Cfe,+ 4 )cf > , we obtain the 

Theorem. 
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