Commentationes Mathematicae Universitatis Carolinae

Zdenék Frolik
Hyper-extensions of o-algebras

Commentationes Mathematicae Universitatis Carolinae, Vol. 14 (1973), No. 2, 361--375

Persistent URL: http://dml.cz/dmlcz/105496

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105496
http://project.dml.cz

Commentationes Mathematicae Universitatis Camlinu'

14,2(1973)

HYPER-EXTENSIONS OF 6 -ALGEBRAS

Zden¥k FROLfK, Praha

Ai)_g}fggj: A new operation "measurably discrete”
union is introduced, and for any ¢ -algebra two & -
algebras HhQ and HQ (oA ) are introduced and
the extension of two-valued measures is investigated.
For an extension theorem for real valued measures two
similar hyper-extensions A, Q and H,Q are intro-
duced. The results were discussed in my 1970-71 seminar,
and they were announced in my talk at the 3rd Prague
Symposium in Topology and its Applications.

xgmggg_md_mﬂm: extension of a o -algebra,
extension of measures, hyper-rocks, regular measures,

measurable cardinal.

AMS, Primary 28A05 Ref.2. ¥ 51%
Secondary 54C50
26A21
1. Discrete families wrt a collection.

Let M be a collection of seta. A family
{fMglaedAt in M ia called completely additive in
m (or completely M -additive) if the union of each
subfamily of {Mg3 belongs to M ., A family of sets
{XaglaeX?t is called 7 -discrete if there exists
a completely M -additive disjoint family {M,? such
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that M, o Xo for each a .
Evidently, if 1X,3 ic MM -diacrete, and if Y, <

c X, for each a , then {Y,} is M -discrete. The de-

)
finitions are given in full generality, although our re-
sults will merely concern the case when M is a ¢ -al-
gebra.

A collection 7  is called separable if each M -
discrete family is countable. Recall that a collection M
satisfies the CCC (countable chain condition) if each dis-
Jjoint family in M is countable. Hence CCC implies sepa-
rability, and the converse is true if M  is completely
additive. By a non-trivial Theorem 1 in Frolfk [1l] every
analytic 6 -algebra is separable. If P &, then eve-
ry countably generated 6  -algebra is separable (because
if there exists a completely 1 -additive disjoint fami-
ly of cardinal m , then the cardinal of 1  is greater
or equal to 2™ ) .

There is a very ihteresting result by F. Hansell [11]
which says that if X is a completely metrizable space
then every Ba X -discrete family is @ ~-discretely de-
composable, see Frolik [3] or (5] .

Definition. A collection N is called D, -closed
if every ‘M -discrete family of non-measurable cardinal
in M is completely additive in 1 . We denote by Doy
the collection which consists of the unions of 1M -discre-
te families of non-measurable cardinal ranging in 7 . If

M =M  then we write simply ) instead of Dy -

Repmark. F. Heansell [1],[2] studied extension of the
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Borel 6 -field in a metric space by "topologically" dis-

crece unions. In a complete metric space both operations

are equivalent by the Hansell s result referred to above.
For example, every aeparable 6 -algebra is D -

closed.

2. r-rocks.

If M 1is a collection of sets then o7 (T ,
respectively) denotes the smallest countably multiplicati-
ve and countably additive ( @ -algebra, respectively) which
contains 7 .

Definition. Let 7l be a collection of sets. For any
collection 7 1let

S%mn be the amallest ¥ o N such that
@ ¥ = Dm F=7 ’
and let
o%mn be the smallest ¥ o5 7N such that

If I is a collection of sets denote by @y 7.  the
smallest % 5 7L  such that @ F=D&F = F , and deno-

te by
<, N the smallest § o> 7 such that
< F=D2F=7F .
The elements of @, N are called the M -hy-
per-rocks over 1 , the elements of @, T are called

the hyper-rocks over M .
Finally we define @, and oy as follows:
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epMN = Phom !
“ﬁu% = wh“,n .
Clearly: '
xpM = M if and only if o, =M =M ;
and

@M = M if and only it g, = M = M .

It is well known that if ¥ is a cover of X

compl Fce ¥,

, and if

then
;o?’:oc?’ .

Similar results hold for hyper extensions.

Theorem A. Let ¥ be a cover of X . If
anfpl,x F < @y F
then
oy F =y &
(and the converse is obvious).
Proof. Consider the collection
¢ =EiMiMeg, F, X-Mep, F? .

We have ¥ c @ < ooy ¥ , and G 1is complemented, and
hence it is enough to show that

G c G >DGg .
If U is the union of a sequence {U,? in G , then
X -U is the intersection of the sequence {X - Un? in

G ,and hence both & and X-1U belong to @, F , and
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hence UL e G -

Now let U  be the union of a § -discrete family
{U,la €A% in G . There exists a completely § -additi-
ve family {6, 3% with G, o U,  for each a .We may
and shall assume that {6, % is a cover of X . Since
4 Go% is completely (@, ¥ -additive, and both {1, %
and {6, -Ua} range in @y F , the two sets U and
X-u belong to @4 ¥ , and hence, by definiticn
of g , U Dbelongs to § .

Theorem B, Let ¥ be a cover of X . If
compl Feoce,¥

then

(and the converse is obvious).

Proof. Show that
compl, @ Fece¥F

and proceed as in the proof of Theorem A

Corollary. If - 1is an algebra then

SO3‘= o(.?" @hé"s xhﬁ', @”?'z ocﬂg" E

Remark. It is obvious that Theorems A and B hold for
the analogous concepts which we get by deleting the assump-
tions of non-measurability of discrete unions. On the other
hand, the assumption of non-measurability of the admitted

unions is essential in what follows.

- 365 -



3. Extensions of maximal filters with CIP.

Here we prove one of the two our main results. By a pa-

ving of a set X we mean a caover of X which is closed

under finite unions and finite intersections.

Theorem C. Let ¥ be a paving of X , and let &’ =
=@y F . If  ie a maximal & -filter with CIP, then

Y=EiMIMeF , Mo N e d for some N7
is a maximal filter in 3’ , and hence

Y=E{MIMe?®, MAld ] is centredl ,
is the only maximal ¥’ -filter with

yﬂg‘:@ .

in particular, ¥

Proof. Let ®* be the filter in et X  which has

® for a basis. Consider the collecticn G of all G e

e ¥’ such that

if 6nldP] is centred then G e $* .

We shall prove that @, G < G ; since G > F it would

follow G = F!

Assume that M = N{M, ¥ where {M,3 is a sequen-

ce in g, ,IE M meets each element of d'd then so does

each M, , and hence we can choose a sequence {F,j in
I such that F, < M, ; now the intersection F of
{F,? belongs to J'¢ and is contained in M . Thus
MLe G .

Now let M= U{M,} where {M,3} is a sequence

*
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in G . If M meets each element of oJ°¢ , then some M,
meets each element of d°$ ; indeed, if the converse were
true then there would be a sequence 1T, % in J9 with
MpAF,+ 0, and hence F= N{Fr3 e P would be
disjoint to M . If M, meets each element of J¢ then
Mn € §* , and hence M e $* .

Finally, let M be the union of a @ -discrete non-
measurable family {Ma% in G , and let M meet each
element of J°§ . Choose a disjoint completely G =-addi-
tive family { Gy % in G such that Gq o M, for each
a . Consider the collection A of subsets B of A
such that

Gg = UiG,la eBl e d* .

Since 4Gz3 ranges in G ,if Cc A then either C e
€l or A-Ce (O . It followa that (1 is a maximal
filter with CIP in exp A . Since the cardinal of A is non-
measurable, some (a)e @ where a € A. Thus G, € d* .
Hence Mg = M A Gy meets each element of &'$ , and
hence M, € $* because M, e G . This concludes the

proof.

Corollary. Let ¥ be a paving of X , and for each
maximal % -filter with CIP $ 1let &’ be the filter in
7 =y ¥ which has & for its baais. Then {$— &’}
is a bijection onto the set of all maximal 7’ -filters with
CIP.

Remark. This is a generalization of the result of Hayes
[1] and Frolfk [2] which we get by replacing @, by @ . It
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should be remarked that the result extends to hyper-Souslin
sets (the questions of taking countable intersections and
countable unions are replaced by the Souslin operation).

It seems to be useful to state explicitly the following

result which was proved in the proof of Theorem C.

Lemmg A. Let 3¢ be a paving of X , and let ¥ be
a maximal ¥ -filter with CIP. If H € #  is the union

of an ¥ -discrete non-measurable family {H,3% in %

then Hg € ¥ for some a .

4, Maximal filters based in a sub-paving.

Theorem D. Let ¥ and G o F be pavings of X ,
and let ¥ be a maximal, G -filter with CIP. Let 3’ =
= Pag F . There exists a maximal &’ -filter with CIP
y? such that

YVAF=Y¥n?F ;

in addition Jp , where b =¥ A F , is a basis for
¥ o,

Proof. By Theorem C we may and shall assume that G
is D -closed and @ -closed. Then 7%’ c g, . Denote by
d*  the filter in <xp X which has J°d = for its
basis. Consider the collection & of all M in %’ such
that

if Me¥ then M e d* .
It is enough to show that @ < & and Dg & c &£ .
The proof of the former relation follows (verbatim) the proof
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of a similar relation in § 3. The proof of the latter rela-
tion follows the pattern of the proof of Theorem C, however
we sketch the proof. Assume that L is the union of a G -~
discrete family 1L,% in & , and let G  be the union
of a corresponding completely G -additive family £ Ga3
which dominates 4Lo3% . If L & ¥ then L ¢ & by
definition, If L e ¥ then G € ¥ , and by Lemma A

Go & ¥ for some a . Since M e ¥, Mg=Gy, A M e ¥,
and since M, € & , necessarily M, € &* , and hen-
ce M e * .

The following corollary seems to be worth of stating.

Lemmg B, Let & be a paving of X, and let & be
a maximal & ~filter with CIP. Let H  be the union of a
femily {H, 3 in 3 . If there exists a paving X o &
of-x such that

(a) {Hy3% is X -discrete,
and

(b) $ extends to a maximal X <filter with CIP, then

Hoe § for some a .

5. Applications. For definitions see Frolfk [3] or [4].

Theorem E. Let #, G ,¥# be pavingsof X, Fc @ c
c ¥ , and let ¥ be @y -closed, and let

q,:?hge?.

Then:
a) If G = ¥ then ¥ ig mcximal-complete if and
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only if % is maximal-complete. In other words, ¥ is ma-
ximal-complete if and only if ¢, & is maximal-complete.

b) If ¥ is maximal-complete, and if ¥ is a maxi-
mal ¥ -filter with CIP, then N¥n g + f .

Remark. In the usual terminology in measure theory one
may restate the results as follows (by a measure we shall
mean a two-valued G -additive measure). If & is a mea-
sure on ¥ (now % is an algebra) then «  extends uni-
quely to a measure w' on oy F , and w’ is JIF -re-
gular. If w' is a measureon ¥ , end if Fc X is a
paving, then the restriction w of (a.’ to xgp ¥ is
& F -regular.

6. Remarks. Let ¥ and ¢ o F be pavings of X .
We propose to call #F degcriptive in § if @, F>o ¢ ,
and to call ¥ weakly descriptive in § if

F o .

B, o8
Thue, F is descriptive or weakly descriptive in G if
and only if ¥ has the corresponding property in ¢, G .

If X is a topological space then the following choi-
ces for ¥ and (} seem to be interesting:

&) F=38aX, G=BoX .

b) &= closed X, G = Bor X .

¢) %= compact X , G = Bo X .

d) F=Ba X n compact X, G = Ba X .

These cases will be treated elsewhere. The case a) is stu-
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died in Frolfkx [6] and Hager [1].

Te ng of 1_valued me o

In § 1 we made cardinal restriction on taking discrete
unions to have Theorems B, C and D and E on extension of ma=-
ximal filters with CIP, or equivalently on extension of two
valued measures. From the point of view of descriptive theo-
ry of sets the concepts we obtain first by supressing the
cardinal restriction on discrete unions are of interest. In
this section we discuss similar theorems for extension of
real valued measures. Then further cardinal restrictions on
discrete unions are necessary.

Call a cardinal & real non-measurable if there is no
real valued non-negative & -additive measure (w on
~xn X where X is a set of cardinal &  such that
@ (x)=0 for each x € X, and wX = 1. Hence, if
+ is real non-measurable then it is non-measurable. It
was proved by Ulam that «, is real non-measurable, and
if some & is non-measurable and real measurable then

P27 0 is real measurable.

We noted in § 2 that Theorems A and B hold for the con-
cepts without cardinal restrictions on the discrete unions
(but not Theorems C, D, and E), It is easy to check that
Theorems A and B hold if the operation of taking discrete
unions is restricted to families of real non-measurable car-
dinal; the resulting theorems are called Theorem Ar and Theo-
rem Br. The notation with cardinal restriction to real non=-
measurable unions is obtained by subscript x to D,.h and
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Remark. In general it would be much convenient to have
D,% and H for the setting without any cardinal res-
triction on the unions, D, , £, and H, for the setting
with non-measurable unions, and D, , %, and H, for )
the.setting with real non-measurable unions. This is the
notation we shall use elsewhere. |

By a probability on an & -algebra we mean a non-ne-
gative real valued measure such that the measure of the

whole spaces is 1 .

Theorem F. Let O be a & -algebra on a set X , and
let B = cc,.mQ, . If w is a probsbility on @ , then
there exists a unique probability » on J3 which extends
v . In addition, for each B in 73 there exist A , A,
in @ such that

A, c B c4, ,
and )
wh, = wuh, (=»B) .

w. If there exists a probability w on Q
such that <X, A, «> is a complete probability space
(ieee @wA=0 implies 2¢f A c @ ), then oy A =0Q .

Remark. For a 6 -algebra (1 let U(Q) stand for
the 6 -algebra of universally measurable sets wrt & , i.e.
the intersection of the completions of (I wrt probabili-

ties on Q , Theorem F says that
, QO cVUa) .

L2
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Certainly the inclusion is strict in general. In fact the
elements of our extensions are as respectable sets in non-
separable case as Borel sets in separable case are. If @
is separable, then DA =),4 =D, 4 = 4 , and

hence the extensions are trivial.

Proof of Theorem F. Denote by < the completion of
Q4 wrt w and let 7 be the corresponding unique ex-

tension of w . Thus ¢ is the set of all C < X  such
that wA ;=@wA, forsme A; ed,A, cCcA, .Clear-
ly € 1is a 6 -algebra, We must show that

B c € .

It is enough to show that D, € c € .. Assume that C is
the union of a € -discrete family {Cola € A% , and as-

sume that the cardinal of A is real non-measurable. Let
A=qalaC £03, A= A-4".
The set A' is countable by a standard argument, and the
set A’ is real non-measurable because A ia. Thua
rUALC laeA’i =0,

Teke A4, , A,, in @, a € A’ , such that

a

2a

A.,,QCCQC.A.

and

(“'A'(w = ‘“’Aﬁa« ?

and take A* e @ such that A* o UiC, lae A’} wuA*=0.

Put
A =UsA laech} |,
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Ay=A*U UdA, laec A’} .

Clearly A, ¢ C « A;, @A, = wA, . This concludes

the proof.

z., FroLfk: [1)]
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