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LOCAL ERGODIC PROPERTIES OF Lp-OPERATOR SEMIGROUPS

Ryoetaro SATO , Sakado

Abgtract: In this note, utilizing a method of T.R.
TerreIl [The local ergodic theorem and semigroups of nonpo-
sitive operators, J.Functional Analysis 10(1972§.424—429 ’

a necessary and sufficient condition is given for a semigroup
I'={T, st 8 0% of bounded linear operators in an L,-spa-

ce with 18 n < oo which is strongly integrable over every
finite interval and of type €, to satisfy the local ergodic
theorem,
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The main result

Let (X, & m) be a 6 -finite measure space and
1€ pn < o0 . Let T= {Tg:t 2 03 be a semigroup of boun-
ded linear operators in Lp=L, (X, F, m), i.ea To= 1
(the identity operator), Tp.e = Ty T,, , and T ly < @ .
In this section we shall assume that [ satisfies the follo-
wing two conditions: '

(ec) For any f e L, , T,£ is integrable with res-

pect to Lebesgue measure on every finite interval
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[a, £l cC0,®) .

(f) For any £ ELT‘_ strong - Lum f T ,fdt = £,

k]

It follows ([1l, p.686) that for each £ € L,  there
exists a scalar function T, £(x) , mMmeasurable with respect
to *he product of Lebesgue measure and m , such that for al-
most all t, Ty £ (x) belongs, as a function of x , to the
equivalence class of th . Moreover there exists a set
N(£Ye & with m (N(£)) = 0, dependent on £ but in-
dependent of t , such that if x ¢ N(£) , then T, £(x)
is integrable on every finite interval [a, & ] and the in-

2
tegral J; Tyf(x )t as a function of x , belongs to

’
o

the equivalence class of f“‘ 'I‘.,,_£ dat , From now on we shall

s-tr

write Sy £(x) for [¥Y T e(x)dt .
(4

Theorem 1. The following two conditions are equivalent:

. 1 &
(1) For any feLﬂ,Rf%ZSof(x) = f(x) a.e.

(1i) There exists a constant ¢ > 0 such that for any

fel, andany >0,

({x; Lm s f(x)>3) & — [I1£(™dm .
m X 3 .&J,M X f

Proof. We proceed as in [2]. (i) => (ii): If £ e L,
and J" > 0 , then

. 1 % 1 )
m (4 %MES" £>FY)em(@f>dN & —¢ [1£1%dm .

(11) == (41): Suppose that (ii) holds but (i) does not. Then
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there exists an € € L,ﬂ, with
m({m»wp S$£>£!)>0 .
Choose an A € & with 0 « m (A) < c0 and A ¢

. 1 k&
{ um —_
c b‘owb50£>£3, and let @ > 0 be such that

. 1 .
(1) m(An{m sup — 5, £>f+at¥)mad=>10.
N S

. 4 % .
Since strong- Lm — by (3), there exists

an f, e L, such that

Q?'d- af'd. j

~ .
fli-fol dm < min ( =T alley =5

and

1

Lom 2 55 £, (x) = £, (x) a.e.

240

It follows that
mlasf-8& N &milE-51 2 21)
2 r a
(= [lg-£Mdm < &
On the other hand (1) implies that

m({um,mbsbff £)>a+£-£,1)

4

-m(&.&mm $b£>a¢+£'§7zd—-

Thus we have

4sb'

m({ﬂum-/uqv C£-£)>-q—'}7

=3—‘L>—>c Ly f1s-£,1"dm
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a contradiction. This completes the proof.

An application

In this section we shall assume that m {Ty3t &0 3
is a strongly continuous eemigrou.p' of linear contractions in
L,, .y, IT 0, € 4 forany t & 0, and the mapping
t—> T, ¢ is continuous in the strong topology for any fe
¢ L, . Suppose, in addition, that there exists a constant
K >0 such that AT £, & XU€N, for any feL ,nL,.
By the Riesz convexity theorem I’ may be considered to be
a strongly continuous semigroup of bounded linear operators

in Ly for each 4 with 41 & n < o

Theorem 2, For any £ e L, with 1 & pn < @ ,

tim L S¥e(y) m £0x)  aue.
pi0 ¥

Proof. In the case of f+ = 41 , the theorem is proved by
Terrell [2). Hence we will consider here only the case of
A< qp < oo, Asinll, VIIL, 7], for f e Lo and a >
>0,1let

2 .
%= up l%s, £l, e(a)=4x; | £(x)l>al

Oeclrcw
and

o*(a)m{xs £*(x) >a 'l .

Then it follows easily from arguments analogous to those gi-
ven in [1, VIII.7] that
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am(e*(2XaN & [ lfldm
ela)
and
» 2 n» n
fe¥rdm & —— 2" [1£1%dm .

Therefore for any d" > 0 ,

m({mmis{,“’s>a’3>.‘.mu sup 1487 81> 1)

% -—ff‘"‘am i (—-— axy™) f1£1™dm ,

and hence Theorem 1 completes the proof,

Remark, Under the restriction that X = 4 , the above
theorem has been proved recently and independently by Mr. Y.
Kubokawa, But his method of proof is quite different from

ourss,
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