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TYPE
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Josef DANES, Praha

We will use the notations and definitions of [1] and [2].
Let X be a Banach apace, Y a clesed linear subspace of

X*, amnc on ¥ satisfying the conditions (1) and (4) of
(Z]. Let X:X—>» Y, F: ¥ — X be some mappings and

consider the equation:

(Hoea)  +XFy =0 .

Theorem l. Suppose that for some @ > 0 , we have:
(1) -KFe DCu,B, 0,00,
(11) % e 3By(0,p) implies <y ,Fy)> >0,

(111) {Kx,x>Z0 for all x in R(F)c X .

Then (H.e.) has at least onme solution in §y (0, ) . More-
over, if

(11°) 4 4n Y\B, (0,p) implies <4 ,Fy -0 , then
each solution of (H.e.) lies in B, (0,p@)

Theorem 2. Suppose that X 4is injective, . =homogenous
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(p>0),08d. Let © > 0 be such that

(1) -XFed(u,By(0,0)) .
(11) Yy & GBY(O,p) implies <&,(K'4+F)¢)>O,

(111) <Kx,x> 2 0 for all x in X .

Then (H.e.) has at least one solution in By (0, @) . More-
over, if

(13) 4 in R(X)N\By(0,p) implies g, (K4 Flgd>
>0, then all solutions of (H.e.) lie in By (0,0) NR(X) .

Propoaition le Let R(X) be symmetrie and starshaped
wrt. 0 . Suppose that for some @ > 0 :

(1) ~-XFe D(u,B,(0,0) ,
(11) x 1n X, IKxl= @ 1mplies <CK+KFK)x,x> >0,

(111) <Xx,x>Z2 0 for all x in X .

Then (H.e.) has at least ome solution :Lan(O,@)OR(J() .

Moreover, if

(11°) x 1o X, IKxl =z ¢ implies
{C(K+XFK)x,x? > 0, then esch solution of (H.e.) lies
1n By €0, @) NR(K) .

Proposition 2. Let. X be symmetrie linear. Suppose
that for some ¢ >0 and a function g:R [0,0) — R
we have:
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(1) ~-KF € D(w) on bounded acta,

(11) (4, Fyd>Z.-9 (lgl) ®or all 4 in R(X) ,
(111)  <Kx,x > ZclKkxk? for l x in X ,

(iv) tim  sigla)<c .
A¥+00

Then (H.e.) has at least one solution in Y .

Proposition 3. Let X, be a normed linear apace, Ke:

:x,--» .)[o a bounded angle-bounded mapping. Then there is a
constant ¢ > 0 such that for all X in X, :

<K, (x), x> 2 e 1K, Gt .

Theorem 3. Let K be angle-bounded and ¢:R,— R,
a function such that

(1) -KF € D(w) on bounded sets,
(11) <q4,Fy> =2 —=@Ulgl) for all 4 in R(X),
(v) tim 5 @) =0 .

D40

Then (H.e.) has at least one solution in Y .

Propoaition 4. Suppose that ¢ >0 end 9: R, — R
are such that

(1) -~KFe D(w) on bounded sets,

(11) <4,Py> 2~ @(lgyll) for all 4 in R(X) ,

(111) <K, x> = clKxl? forallx in X; X 1inear;

ey )

(av) Mmoo Tl 1Tyl
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Then (H.e.) has at least one solution in Y .

Theorep 4. Let (X,H,X*) be a triple in normal po-
sition, X quasi-accretive (with the constant @y ),

K-KIH +H — H,P"-F‘pﬂ. . It is known that X, =

- (I-hf)"‘K is well-defined and maps X continuously
into X* for A «< @y + Suppose that for scme ¢ > 0

and ho < A< “x we have:
(1) -X,F, e D(u,By (0,0 ,
(11) 4 in 8B, (0,p) implies <y, Fy)+a lgl, =0,

Then (H.e.) has a solution in By (0,p) .

Theorep 5. Let (X,H,X*) be as in Theorem 4, X
quasi-angle-bounded, @ : R > R 4 8uch that for some
A < @y we have:

(1) -X,F, € D(w)  on bounged sets,
(11) ¢ in Y dimplies

<o, Fyd+ Algly 2 - @Ugly)
(iv) %*”I;zQ »=20.

Then (H.e.) has at least one solution in Y .

Remark. Theorem 1 remains true if (ii) of Theorem 1 is
replaced by :

(11°°) 4 in 3By (0, @) dimplies<y,Fyd> = 0,
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K is linear, the mnc « satisfies some additional con-
ditions, X/N(K) 1s separable, and (i) is replaced by:

(1) w(XFM) € % @ (M) for any McB,(0,0) (<1).

Remark. Detailed proofs will be given in Math.Nachrich-

ten, under the same title.
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