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13,1 (1972)

BAIRR SETS AND UNIFORMITIES: ON COMPLETE METRIC SPACES
Z. FROLK, Praha

R.W. Hansel [H 1] proved a lemma, see § 2, which re-
lates measurable discretsness to the topological discrete-
ness in completely metrizable spaces. In this note we want
to derive from this lemma several consequences, which all
are deep results on completely metrizable spaces. In § 1
the main results are stated. The proofs are given in §'s
2 and 3 . In § 4 we prove two general results to show the
relationship between algebras and uniformities. Mpst of

the results have been stated in [F 21.

1. Maip resulis

If X is a t'opological apace we denote by Ba X the
¢’ —algebra of all Baire sets in X as well as the cor-
responding measurable space. Recall that Ba X is the
smallest & =-algebra which makes all continuous functions
(real valued) on X measurable. We need to know that Ba X
is the smallest collection ¥ which contains all the ze=-
ro sets and is closed under countable unions and countable
intersections. Hence we can write Ba X = U{ Blao<a?,
where $, 1is the collection of all zero sets in X  amd
3

< consists of all countable unions or :lntersect:lom‘ of
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elements of U £ 5’3“ 1B < o ¥ according to
as oo 1s o0dd or even.

By an abeo‘lute Souslin space we mean a metrizable
space X which is Souslin in each metrizable Y o X .
In the proofs we assume that the reader is familiar with
the basie properties of Souslin sets in a space or deri-
ved from a collection of sets. However, the following four
theorems are non-trivial if the assumptions that some spa-
ces are absolute Souslin are replaced by the stronger as-
sumption that the spaces are completely metrizablee.

Theoram l. Every Baire isomorphism of two absolute
Souslin spaces 1s a generalized homeomorphisme. In other
words, if £s Ba X —> BaY 1is an isomorphism, and if X,
Y are absolute Souslin spaces, then there exist count-
able ordinals o , 8 such that if U is open in X
and V is openin Y them fL[U] is of Baire class
& oo In Y, and £-10LV1 1is of the Baire class
&3 1in X .

Remark. The result is trivial if X and Y are se-
parable (without any additional assumptions on X and Y ).
The validity of Theorem 1 has been a problem for a long ti-
me, see Kuratowski.

Theorem 1 is an immediate consequence of the following

Theorem 2. If £ 1is a Baire measurable mapping of an
sbsolute Souslin space X into a metrizable space Y then
£ 48 of certain Baire class o =< @, i.e. £~7LV]

is of clasa & oc for eachopen V in Y .
By an ultrauniformity we mean a uniformity which has 2
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base for the uniform covers which consists from disjoint
covers (= partitions).

Theorepm 3. Let X be an absolute Souslin space.
Among all ultrauniformities which induce the proximity
induced by all bounded Baire measurable functions, there
exists the finest one.

The symbols in the next result will be explained in
§ 3.

Theorem 4. Let X be an absolute Souslin space. Then

HBa (X)= h Ba (X) = bi- Souvtin Ba (X)= bi-Soustin(X).

2. Proofs of Theorems ] and 2

Following F. Hansell [H 1] a family §X, la & A ?
in a topological space is called & =discretely decompo-
sable, abb. & -d.d., if there exists a family {X,, la e
€eA,meN} suchthat X, = U{X,, Im?} for
each @ and {X,, la e A} 1is aiscrete in X for
each m , Hence {X, la € A3 1is @& -discrete if and
only if fX,3 1s o -d.d. with X % such that each
Xw is either xa‘ or the empty set. The following lem-
ma due to Hansell [H 1] is the basic stone in the proofs
of all results mentioned above.

Hansell lemma. et X Dbe a metrizable space, and let
Xt bea disjoint family of subsets of X such that
the union of each subfamily of { X, § is an absolute
Souslin set. Then {X, ¥ 1is ¢ -d.a.

We need two more lemmas.
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Lemma. 1. Let {X, la e A? be a topologically

discrete collection of subsets of a space X , and let
.'BSU{!BC, |ac<a)1§

be defined as follows: .'Bo is the collection of closed
sets in X , and M, 1s the collection of all countab-
le unions or intersections of elements of UfHB, I f < o}
according to a8 ov 1s o0dd or even (includes limit ordi~
nals). Thus 5 is the smallest collection which cont=-
ains the closed sets and whi¢h is closed under countable
unions and countable intersections.

Then the following conditions are equivalent.

A) The family {X_,? vranges in some B, .

B) The union of each subfamily of { X, # belongs to
5.

C) The union X’ of {X_,# belongsto B .

Progf. It follows by the transfinite induetion that A
implies B. The implication B === C is self-evident. If
the union X’ of {X_, # |Dbelongs to B, then X, =
=cl Xo n X’ belongs to S, by transfinite
induction ( [ B _ 1A~ closed = B, ). This proves that
C implies A.

Lemma 2. let iX,la € A% be a disjoint family
in an absolute Souslin space X ., The following two condi-
tions are equivalent:

A) The family {X_} 1s 6 -d.d. and ranges in some
By (see Lemma 1).

B) The union of each subfamily of { X, § belongs to
$H ( = Baire sets in X ).
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Proof. It follows easily from Lemma 1 that Condiid on
A implies Condition B. Assume B. By Hansell’s lemma we can
write X, = U4 X__ ¢ such that {X_,, |l a ¥
is discrete for each m . We may and shall assume that
Xam 18 closed in X, for each @ and m . Let X,
be the unionof {X_,,. |l a } , and X’ be the union
of {X, 3 . Let &« be the class of X’ . Since X, 1is
closed in X’, X, is of class &€ oo for each = ,
by Lemma 1 all X, , are of class & o. , and hence

each X, is of class & o + 1.

Proof of Theorem 2. Let € = U4 €, 3% be an open
base for Y such that each collection ‘ew is discrete

in Y . Since the union of each subcollection of € 18 &
Baire set in Y , the collection D, = £ 'L€, 1 has
the corresponding property in X . By Lemma 2 there is a
countable ordinal oc,  such that the class of each ele-
ment of ), is £ o, .Let & be the union of all
oD, ; then each element of &  has the class % oc ,
where o 18 Aupr o . We shall prove that for each
open set U the class of £-TLU] 1s & &« + 1 .
Let U, be the unionof all C & <, with Cc 1.
Since € 4is an open base, W 1s the unionof U, ,
and hence £~ [U ] 4is the union of all £-'CU, 1.
All £ [ U1 are of class 4 oc + 4 and hence
£1LU]1 1s of class & o« + 2 . This concludes the

proof.

Proof of Thgorem 1. A corollary to Theorem 2.
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3. Proofs of Theorems 3 and 4. Let J3 be an algetra
of subsets of a set X . A family {x“§ of subsets of

X 1s said to be completely J3 -additive if the union
of each subfamily of {X_ ¢ belongs to 7 , and fX_,?
is said to be I3 ~-discrete if there exists a disjoint
cover ( = partition) 4§ B,% of X ,which is completely
) -sdaitive and dominates {X,? (i.e. B, 2 X, for
each a ). Clearly a partition of X 1is 9 =-discrete
if and only if it is completely .3 =-additive.

Denote by 4B or w4 < X, B> the uniform space
which has A -discrete partitions for a subbase of uni=~
form covers; this subbase need not be a base because the
meet of two B -discrete partitions need not be R -dis-
crete. It follows from Lemma 2 that

Theorem 5. If X is an absolute Souslin space then
the 3 -discrete partitions form a base for the uniform
covers of . Ba (X ), Indeed, let §X, % and {Y, ?
be J3 -discrete partitions of X where J3 is the & -,
algebrs of Baire sets in X , By lLemma 2 sll elehenta of
iX, ¢ are of class £ o , all elements of 1Y, ¢?
are of class £ 3 , and hence, all elements of
{X, n Y, ?} areof theclass & ¢ = mar (<, B) .
By Hansell’s lemma the partitions {X,3 and Y, # are

6 -d.4., and s0 {X, n Y, ¥ dis @ -d.d. Finally, by
Lemms 2, the partition {X, n Yl’_ $ is 73 -discre-
te. The proof is finiahed.

If m 1is an infinite cardinal, denote by «,, B
o wu, <X, B3> the uniform space such that the
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3 -discrete partitions of cardinal less than m form
a subbase for the uniform covers. If m = #, or m = %,
then these covers form a base (if A& 1is an 6 -glgebra),
and in addition, it is easy to check that the ecorresponding
uniformities are projectively induced by all bounded or all
(not necessarily bounded) J -measurable (real valued) func-
tions.

Proof of Theorem 3. By Theorem 5 the @B ~discrete co—

vers form a base of the uniform covers of « B . It fol-
lows that 4 B 1is proximally equ_ivaient to Moy H .

Let U be any ultra-uniformly which is proximally coar=-
ser than wy »., Ir {xm} is any uniform partition
then {X,§ 1s B -discrete, and hence { X f is s uni-
form cover of 4 J3 ., This concludes the proof of Theorem
3.

Remark. By an S =-uniformity we mean a uniformity which
has the point-finite (one gets the same notion if he takes
uniformly locally finite) uniform covers for the baais for
uniform ecovers. In Theorem ¥ one can replace "ultrauniformi-
ty" by " S -uniformity". I don’t know the answer in general.

The statement of Theorem 4 requires explanation.

Following [F 2], if f3} 4is a ¢’ -algebra on X , denote
by h I3 the smallest @ —-algebra € o T3 which ia
closed under the unions of arbitrary large R =-discrete fa-
milies, and denote by H 73 the smallest 6 —algebra
€ o B  which has the property b € = € . For the pro-
perties of .2 and H we refer to [F 31.
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Denote by bi-Souslin J3 - and call bi=Souslin sets
over 53 , the collection of all ¥ < X  such that
the twosets Y and X - Y are Souslin eets.

Leppa 3. et B = Ba X where X 1is an absolute
Souslin space. Then

B =HB c bi- Sountin B .

Proof. One proves that H BB is the smallest col-
lection O o R which is closed under countable uni=-
ons, countable intersections, and 3 -discrete unions.
The collection Souslin X is also closed under these ope-

rations, and hence

h B c Sountin B ,

eand since H A is an @& =-algebra,
AP c bi-Soustin B .

Since s B c Souslin J3 , every S JB -discrete
partition of X 4s 6 -d.d. by Hansell’s lemma, and
hence, every v 3 -discrete family in Hh B 18 6 -
d.d., and finally, the union of every A 7 -discrete fa-
mily in 4 J3  belongs to S B as a countable union of

topological discrete unions of elements of KL 73 . It
follows that Ml 7 = s B , and hence

HB = hB .
This concludes the proof.
Lempa 4. Let $ = Ba X where X 1s an absolute

Sousglin space. Then
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Mi=Souslinm B c h B .

Proof. This follows from the Hansell’s First Separa-
tion Principle for non-separable absolute Souslin sets
[H3]: If X is a metrizable space, and if 51 and 52
sre disjoint absolute Souslin sets in X , then S, c
cBcX-5 forsom B s % B . For enother proef
see [F 4],

Proof of Theorem 4. From Lemmas 3 and 4.

4. Algebrgs and upiformitles
The two results of this sections are developed in[F 3].
Theorem 6. Let B be a @& -algebra on X . Then

P 1is locally finite and proximally equivalent to
u«,vﬁ if sndonly if W D = B .,
Proof. We shall prove "if", "only if"™ is checked simi-
larly. Assume W B = B . Ir §X, 3 and {Yy } are tw
B -aiscrete partitions then {X, ~ ¥, # 1s complete-
ly 4% 0 -additive, and hence B -discrete. Thus « B
is proximally equivalent to '“'«“o N . Let {xa,} be a
B -discrete partition of X , and let {X, o3 be a
7 -discrete partition of X, for each a ;tben{X“bf
is M, B -discrete, hence S -discrete, and hence {X_, ?
is a uniform partition of « 5 , This shows that « 7B
is locally fine.
Theorem 7. The following conditions on a @& =-algebra
() u‘n‘X are equivalent:

- 145 -



1} & B is proximally equivalent to oy 3.

2) w P is the finest ultrauniformity proximally
equivalexlmt to  wy B .

3) The P -discrete partitions form a base for the
uniform covers of « B .

Progf. Clearly Condition 1 is equivalent to Condition
3. If an ultreuniformityia proximally coerser than «, B,
then it has a base consisting from B -discrete parti-
tions, and hence Condition 1 implies Condition 2. The im-
plication 2) === 1) is self-evident.
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