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Commentationes Mathematicae Universitatis Carolinae

13,1 (1972)

ON A CONNECTION WITH TORSION ZERO x)

Bohumil CENKL, Boston

1. The existence of a connection without torsion on
the quotient bundle of a distribution on a manifold is
equivalent to the integrability of that distribution. Mo-
re precisely, suppese that M ia a (% -manifeld (all
maps and all ebjects will be C*® threugheut this paper)
and E a subbundle ef the tangent bundle T ef M .

The distributien E ia integrable, i.e. E is tangent

te the leaves of a foliatien en M , if and enly if there
exists a linear cennectien en. @ = T/E  which has zere
tersien. This nete contains an attempt to give some alge-
braic criterion for the existence of a torsionless connec-
tion on. & for a given diatribution E . The main result,
necessary and sufficient conditions for the existence of a
torsionless connection, is stated in terms of a twisting
cochain ¢ from the coalgebra [37 , associated with the
Weil algebrs [2], to the exterior algebra . E of differen-
tial forms on the principal bundle P associated with @,
x) This research was partially supported by the National
Sciencé Foundation, under Grant Number GP-16354.
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and its affine extension.

The existence of a torsionless connection on G =
= T/E in relation to the integrability of E will be
discussed elsevhere.

An analogous criterion for the integrability of a
complex analytic bundle. E — T (M) aver a complex
analytic manifold M can be given in the same way.

Furthermore, let us assume that M is a 2m -dimen-
sional manifnld with an almost complex structure on it.
The existence of a torsionless connection on the almost
complex principle bundle sr: P -—>» M , with the struc-
ture group GL (m,C) is a necessary and sufficient
condition for the almost complex structure to be integrab-
le. Therefore an analogue of the condition mentioned above
would be relevant for the existence of integrable almost

complex structure.

2. let sy: P— M be a principal bundle with the
structure group G = GL(q,R) . Each tlement x of
the Lie algebra G of G defines an associated funda-
mental vector field, denoted also by x , on P . It is
the vector field tangent to the orbits of the right action
of the one-parametric subgroup { eefr tux? of G on
P . Then an the exterior algebra of differential forms
E -n?}’ E” on P there are well defined operations:

d - the differential (antiderivation of degree + 1 ),
4 (x) = the interior product (antiderivation of degree
-1 Ytor x € G

-— )

pect to x (derivation of degree 0 ).

L, - the derivative with res-
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The Weil algebra of the Lie algebra G is the ten-
sor product W = S @ A of the symmetric algedra S
and of the exterior algebra A of the dual G* of G .
It is a differential graded algebra with antiderivation
d” of degree + 1 , and antiderivation i (x) of deg-
ree -1 , and derivation L, of degree 0 ; for all
x € G . Let us identify s’ with A" via the obvi-
ous isomorphism % : A" —> ST, and for X' e A’
denote X' = M (x’) .

Definition 2.1. A linear connection on the principal
bundle s : P — M is a linear mapping
(2.1) £: A'— E*

.

such that for any x € G and x' € G* = A’ holds:

(1) 4 (x)e f(x') = i(x) - x' .,

(2.2)  (4) Ly« F(x") = £(L, (x))

The curvature of the connection f is the mapping
(2.3) f:5"—>¢£?
given by the formula
(2.4) FX) = d(£(x)) = £(x")

‘Let us denote by P,  the affine extenaion of P
the affine connection (linear connection on

and by f,
P_, ), associated with f . Its curvature will be deno-

ted by IA' Amd G _,G6,,S5,,A,, E, stand for the
corresponding objects for the affine extension. The opera-
tors 41 , L, d can be extended to the affine extension
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in an obvious way.

A linear connection on P can also be defined by
an l-form & on P with values in G with certain
conditions, analogous to (2.2), satisfied.

The affine connection associated with the linear
connection (given by the l1-form < ) ia given by the
l-form o + such that the diagram

()

+
T(P+) - G,
(2.5) L L 1
T(P) @ - G

commutos. And the fact that o + is aasociated with o
is expressed in the following way:

(2.6) o, = w0+06

-+

where 6 isal-formon s+ : P—> M  with values in
F  (considering the semidirect product G ,=G+F ),
which is sero on vertical vectors, and with respect to
the right action on P

(2.7) RGO = g0 for any g € G .

If we denote by D the covariant differential of
the connection. w , We get the curvature £l and torsion
® forms on P by the formulas

(2.8) Q=d0, @ =D6 .

The mapping L*w, : T(P)—> G, in its dual

form gives
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Proposition 2.1, A linear connection. £ together
with a 1-form & induce a linear mapping ‘

1 4
(2.9) £, : A\ —>E

such that for any x € G ana x! & Al

£

(1) i)+ £ (x' ) = 4(x) . x'
(2,10 e *

(1) Ly £, (x}) = £, (L, (x\))
and the mapping
(2.11) F,: AL—2?
defined by the formula
(232)  F (x)) = d(£,640-1, ()
is the composition

~ ~ ~
(2130 £ =%+ 1§

of the curvature and torsion of the connection £ .

Proof. The properties (i),(ii) follow immediately
from the definition of a connection. It is enough to notice
that £ + is a composition of a connection £ and a line-
ar mapping £, : A:—» B! (0« A'o <« A_"_<— A «—0)
which is dual to the l-form & .

And the decomposition of ¥ + 18 easily saen by dua-
ligzing the situation. Let §, , &, be two vector fields
on P, Then for any

Xo=xrxg e N, = A@N,, <dlf (&) ~f (5, )5 A§,>=
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KA lf +£,)(x"+ %) =L+ £) (F(x'+ x50, §, AE,> =

= Cdf(n') +df, (x,) = £(Ix') = £(Fxp) - £,(Ix,), §, A §,0=
= (df(x') - £(Tx'), §, A §> +

#Cdf, (xh) = £(Tuy) ~ £, (Fxy), §, A5 > =

=(x', (da+ Lo, @] (§,8,)) +<x,,d8C,, §,) -

- (%, 08,03 (¢,, 8,0 =

-, B CE, 8w <, @ (4, 800> =

=, (2 @4, 8,0 .

3. As was remarked in [2], the notion of s linear
connection makes sense if the exterior algebra E is a
graded diffesrential algebra with an action of the group
G on it. We shall adopt this more algebraic point of
view.

Let S™ be the p -th sysmetric product of G*

and A% the g, -th exterior product of G* . Then we
define

V"'uﬁ”?’ (SP@AY) for i >1,Vi=0, V2=R .
=4
"l

The vector space V = %?o V* is the cochain complex

over R with tho antideriwvation o (this operator is
defined on the Weil algebra in [2]; it is oxtonded to
V°® by the roquirement J(V°) = 0) . Let «: R —>
— V° be the augmentation isomorphism, and




V=90V, V¢ = v* for 41 >0, V°a= 0,
i1€0
be the reduced cochain complex. There is a natural DGA
R -algebra structure on V with the multiplication
CG;G&,')-(e’z@acz)- 6, -6, ® x + x

2 for

", . 2
any 6'4®cc1e5’®A9'4 , 6B, € 5@ A,

where oj, A is the aymmetric and «, . o, the ex-
terior product. Now we associate with V the DGA-coalgeb-
ra AV . First define 3V =RO VO (Vo V)®....
Denote by [+;,..., v, ] anelement + @ ... @, €

eV®...87V (m -timea). For an element v € V =

v 2 .
} & .
Pegsi 2 (s"® A™), V=M20;i“ Vho let ua define

dim v = amd dm v, , =2+ g .

dom v
fu-%:i;{ e
And finally for [a,...,, ] define dim [+,..., 2, =

—p—

=4-n+dimex,+,..+ 7, . Thia gives a gradation

.
*

on the module ﬂv = i?o (Y

In low dimensions we get for example
BV =R; V' =0, (pN2=85"® 1,
(3.1)
(BVY =(s'@N @ '@ ® (s?®AT), etc.
The diagonal map
V: pV— pV ® BV
is defined in the usual way
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mn
Viv,, o, vyl =  Z (), 91010 ,,..., ¥, 1,

o
| ©

and for ¢ € cokex « , V()= V(e)-1®c-c®1 .

Using the antiderivation J°, defined on the Weil algebra,
and the algebra structure on V' we can define an anti-
derivation O of degree +1 on AV by the formula

m - o
dmy y 4. +dm v
dlu,..., v, J-,E:'(-d) 1 R OO £ PR A
L 4

412009 Um

S ——
Ay g e dim vy, [ o v ]
4 1°'°?y Y4 v41 277 "m

Ma

+ (-1

»
L4

]
QA

Now we are in a position to state

Proposition 3.1. ﬂv is a DGA coalgebra with the

coproduct V , grading dim and aifferentiation & .
The mapping o : fV —> ¥ such that o |V =

identity, : ¥® ... ® 7 (n-timea, n = 2 ) — 0 ,

JrI(R)= 0 is a twisting cochain, i.e. in particular

T OLv, ., vy 1= O Ly, ¥ I+ @@ )V, , %]
( @ satanda for the product in 1-’ ), Car,eey ¥, l e

eVe..8V (m -times).

Proof. Is rather straightforward by induction.

Let ua denote by £* the 4 -th symmetric product of
£ and by £™ the M -th exterior product of £ . Then de-

fine a linear map (a chain)

$,: (BV*—>E¥ , 20,

¢¢:<@?)”|Vn§_.,. @V —0for m&®2, §(R)=0, £ 0




by the formula

(3.2) b, =__ @ (F*e@f#) (on V)

2i+zen

Lemma 3,1. Let E=mgs” be a DGA algebra, 8V =

n%(m—’)“’ the DGA coalgebra associated to the Weil algeb-
ra, and { a linear connection. Then the chain ¢ =23 $, e

€ C*(8Y,E) ie a twisting cochain, i.e.
(1) ¢, eCCpV, B, &,=0, daT’ c E*
(3.3)
n-2 —
(1) @ e = 0 andddy =9 0-w(Z 9,04 7.
Proof. The not so obvious part of the lemma is the

formula (ii). This is proved by induction. For = 2 we
have the diagram

2
(3V)2 - F?
(3.4) 8 l oLl
(872 ¢? - E°

where (AV )%, (3V)®  are given by (3.1). For any
[v]e (3V)? we have the formula ¢p*3([+1) = $*L[d»] =

=d$?(Lr1) , Therefore d$? = ¢33 . For =3 we

have to consider the diagram
¢3

3Y? = E?
E l d l
4
(pT* ¢ > E*

where (pV’)g ia given by (3.1) and
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(B =(s'end(s'eN®seNBSRAY ®(S'®1) @
@'e 1@ (S'@A) @ (s*®@ 1) @ (81® A%) .
For Luj, 71 + [v;1 € C{AV)’ we get, by the definition,
$’(Lvy, 51+ [,1)= ¢P(L?1), and trom [2] follows that
d¢PCLayl) = p*Ldw?n) .

But
olem
8(lay,] + Loy1) = [dy, 0,1+ (-1) V’Eaf;,,d'qr;] +
+ Ly, 91+ [dy ],
and

Pty ul + Ly ) = ¢ Ly . v 1+ LIy 1)
This shows that
d XLy, w1+ [y1) = $*O(Lar, v, 14 Ly 1) - P¥CLary .5 1)
On the other hand

Ty, nl+ly,D) = [v,]1@ Lo, 1,
@($*® PMN(Lu 1@y = wf@ V@ FoN) (1@ [y])=

=(F2@ D(lv.u)) = ¢*(Ly . v,3) .
Therefore

d¢® = d*9 - w($?* ® ¢*)T7 .
Now 1ot as assume that (ii) holds. We want to show that

nat —
dpy = Gy - (4_2, ¢, ® ¢M+4-,”V .

We have to coneider the éiagrn
= ?ﬂ %
(BY) > E

’ | ‘|

(pV)"‘" LA —» E*1
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with

@PT=( @ (SPeA*NO( @ (8% AY)® (5°® Ay,
. @

1433 M+ et vened
Let us take an element [« 1+ [w,1;1 € (BV)* . By the de-
finition we have d ¢® ([«l+ [uy,1,1) = d™([wul)
We know from [2] that this is equal to ¢**' d(ful’ =

= q>"""(fa’u,1) . This showa that

de(tul+ [v",v’l)- ¢""3([u.1 +E1r4,1r’J) - ¢'"'3 (cof,v2)) .

Now we have to look more carefully on the tera

¢**" &(Lw,, ,1) . We want to show that

r
® (S"T®AV® (S“BA”) ————— (3V) ® (3¥)
R+ 2u 4@+ veit]

A
3 @
L2 X}

((37) 122 _ > E’lc *1

-1
(3, = @;Zn (¢~1- @ Pypqg ) > is a commutative diagram.

Because V([v,,%,1) = [+ ] ® [#,1 , we get this

easily from the definition. Nemely

-1 N

wyZ, (0% @ ¢ ([ay 1@ Lagd) = Oy (Lo ])
This finishes the proof.

Lemma 3.2. Let E -"90 E® be a DGA algebra, Y, =
'n?o (pV, "™ the DGA coalgebra associated with the
affino oxtonsion of the Woil algebra ( G* is taken as the
basic elemont instecad of G* ), and § , be the linear map
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given by (2.9).
Then the chain ¢ = = 4>'_:_’ e C* cpi’:_ ,E ) , defined by

the formula

o (£: ® §7)
¢+ = 2i3-n + +

is a twisting cochain, i.e.
(1) ¢F e C*(6V,,E), 9] =0, & (V™)< B,

©-2 . =
(11) ¢). @ = 0 and ¢¢:"=¢fa-¢c<,7§a¢f®¢:’)7 .

Proof. Follows the lines of the proof of Lemma 3.l.
As G+ is the affine extension of the linear group
G=GL(g,R),it has a normal subgroup G, of transla-
tions. So that there is an obvious exact sequence
0> G, —>G —>G—0 .
And for the duals of the corresponding Lie algebras, the
e¢xact sequence
0 — G* 25 Gr— G}t—o0 .
The injoction L gives the injective map L ¢ {37'-—> {J_V; ’

and we have the commutative diagram

A7 \4))
¢ E .
/
Av, ¢,
Now ¢, can be locked .tl as an extension of ¢ . And the
following is immediate
Theorem 3.1. A connection f has zero torsion if and
only if the twisting sochain ¢ + 1is the trivial oxten-
sion of ¢ .
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