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ON NORMS AND SUBSETS OF LINEAR SPACES

Josef DANES, Praha

J. Zemének has given [10] an example of a non-empty
finitely open and. nowhere dense convex subset of a normed
linear space. Some generél theorems -conceming the exist-
ence of comparable non-equivalent norms in infinite-dimen-
sional spaces give a possibility to construct simpler ex-
amples of that type (see Proposition 1 ané Examples 1 - 3
below).

Throughout this paper, X denotes a real linear space.
Let.G be a subset of X. G ia said to be: (1) finitely
open (see [6], Definition 1.10.2) if each finite-dimensio-
nal affine subspace I, of X intersectsa G in a set open
in I, (in the unique linear topology on L ), (2) linear-
ly bounded if its intersection with any line is bounded
(as a subset of the line). The convex hull of G is deno-
ted by comwr G ; diam, G denctes the dian;e.t'cr of G in
(X,0en), where [+l is @ norm on X , "—>" deno-
tes. the convergence in the .vtopology given by 0.l . G is
said to be f+I-P it G is P in (X,N- 1) where P is
a property of subsets of X (we shall use P = weak, boun-

ded, open). G is a convex body if it is convex and has a
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non-empty interior in (X, l-H) .

We begin with

Proposition 1. Let Jl-l, and I l,, be two non-equi-
valent norms on a linear space X such that |-, &

@X Il (for some X >0 ). Then C =fxeX: Ixt <1}
is a finitely open nowhere dense absolutely convex (non-
empty) subset of (X, H-ll,).Clearly, X must be infini-
te-dimensional.

Proof. Clearly, ( 1is absolutely convex and non-empty.
Since C is open in (X, Il- “4) it is finitely open. Let
C, denote the closure of C in (X, I<H,) . For each e
eC, there is Xy € C such that Iy - Xy I, < 1. Then

Iyl glg-x l,+llx 1, &ly-x [, +Kix 0 <1+X.
Hence Cic (K+ 1) C . Suppose that C, has a non-empty
interior in (X,li+ll,) . Then the absolute convexity of (,
implies the existence of some A& > 0 such that fx & X:

: “x\lo < Mh3c(, . Tisand C, c (K+1)C imply
that Re I, & AR7TCK+ D U0, a contradiction to the
non-equivalence of both norms.

Proposition 2. Let R+ll, and N+l , be two norms on
o & Xl (XK>0) .
Define -l = (4-t)h-h, +t N U, for 0 =t £ 4
Then 1° |- i, ,te 0,11 are the norns on X , 2°l!-l_t1é
€K(t, )00, for 0&t &t <41, whereK(t, ¢, )=
= Lt +K U=t )1 L4+ KU-£,0°" 3000 0 & ¢, 177000
for 0 < t, & t, & 1 , and hence the norms I+l and ll-i,a

a linear space X such that Il

are equivalent, 4° if the norms I l, and f-l, are non-
equivalent, then l-lo and Iel,, t e (0,11 , are non-

equivelent.
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The proof goes by a direct computation.

Proposition 2 says that two comparable norms can be
joined by a "continuum" of pairwise equivalent norms.

The following two theorems were first proved in our
thesis [3] and published without proof in [4].

Theorem 1. Let (X, 1-1) be a normed linear space
such that its dual space X * is separable. Then there ex-
ists a norm Il ll,, on X such that the |+l -weak topo-
logy and the H-l  -topology coincide on the [ -|l-bounded
subsets of X, and ll-l, & Hell , I£ X has an infinite
dimension, then the norms -l , and fell are non-equi-
valent.

Proof. Let {u, 3 be a dense sequence in the unit ball
of X* and lxll, = 2::1 2"™|m,, (x)) for x in X . It is
easy to see that l+ll,, ie a norm and .M, & -1 . Let
M be a [I-ll-bounded subset of X, X, a point of M .If
¥ is a weak neighbourhood of X, in M then there exist
€e>0 end £ ,...,f 6 X*, I 0=4 (3=4,.,m) scch
that W"‘-c{xemslf’-’(.x-xo)l< e for 3 = 1,...,micW,
Clearly, W, is a weak neighbourhood of X, in M . Without
loss of generality we may suppose that M contains at least
two points. There are integers My geoey My, such that
Vibmy- £4 1 < € Chrdiamy M)="  for jed,..,m . Let
Ned+macimg,on,m,? and VaixeM: lx-x,0, <€ 2-"3.
We shall show that W, O V. Let x e Y . Then
2™ it = £330+ £ (%0 6 U= X,y < 276 5 2°7%
for Zwd,...,m . Since l(up, ~£)(X-%,)I éﬁw,,,{gux-xaks/#,
there is If; (x-%,)| < -i +F <& for = 1,...,,m . Hence
X ‘WI and V < W'1 c W. Conversely, let V={xe M :
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: Ix - X, l,<¢el (e >0) vea I-Hf | ~neighbourhood of X,

in M . A direct calculation shows that ¥ contains W =

w{xeM: Z::' 2""'lamfx-xa)l< e¢/2 3 where m is so lar-
o0 -ned . .

ge that gmmﬂz diam M < & , Clearly, W is a

o) -weak neighbourhood of Xg in M .Suppose that X is

nfinite-dimensional and the norms ll-ll,, and l-f are equi-

L4
valent. Let us denote X*= (X, I-1) and B=4xeX:lxl & 13.

Then

(B,U0-1) -————-> (B,&(X,X*))

wf\/

(B, -1,

is a commutative diaéram of topological spaces and continuous
mappings; (B,%) denotes the set B with the topology indu-
ced by the =T -topology of X . Thus, the three topologies
kW, 01, ,and 6(X,X*) coincide on B, a contradiction
to the infinite dimensionality of X (see [5], Chapt.V,
Exerc. 7.9). Hence the norms A-H,, and k-1 are non-equi-
valent. The proof is complete.

Theorem 2. Let (X,1+1) be a separauie normed linear
space. Then there exists a norm . lu' on X such that the

i+ | -weak topology is on N+l -bounded subsets of X

stronger than the N.§ -topology, and I+l & 0.0l . If
X has infinite dimension, then the norms HN-l, andf:l
are non-equivalent.

Proof. By [1], Chapt.III, Theorem 9.16 the unit ball
of X* contains a sequentially 6 (X*,X) -dense sequence
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(X*=(X,0-1)*) 5 let 5=44} be such a sequence,
and set NxH , = Z:M 2"“‘1 i, ()1 for x in X . Let
O#% X €X. Then there is £ € X* such that I£(x)| =

= e >0. Since R = 4:(.4&,,,_:/&:'&,«»: 1,2,..% is
&(X*,X) -dense in X* ,there exist £ @ R and u,,
such that nu, lies in the 6(X*, X) -neighbourhood
{x* e X*: 1(x*-£)(x)< 6% of £. Then lra, (x) & 1£(x) -

=~ 1Cast, - £)(x)1 >0 , Hence lxk, >0, and -1, is a
norm on X . The proof of the other assertions of the theo-
rem is the same as that of the corresponding assertions of
Theorem 1.

Theorem 3 below is the precise statement of the re-
sults of the proof of Proposition 1.1 in [21. Thvat proof
relies on a paper of V. Klee [7]. We repeat their proof ma-
king use of Theorem 2 instead of [7].

Theorem 3. Let (X, ll-l) be an infinite-dimensional

normed linear space. Then there are two norms || and

- on X such that l-1& Il-¥ & W0 and none
of them is equivalent to .l ., If §.Il is complete (that
is, (X,0N-H) is complete), the norms l.| and IIl. |l ‘are
not.

Proof. Let B be a Hamel baais for X such that
L&l &4 forall P andinf{liitrl: reBi=l0 . It
is easy to verify that W. |l defined as the Minkowski

functional of the absolutely convex hull ef B , satisfies
eur requirements.
Let L. be a separable infinite-dimensional subspace

of ¢(X,1-#), NN, . the norm of Theorem 2 corresponding
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to (L, 1-11), and V=4xelslixll, €43 . By Theorem
2, the norms f. l”; and #-0 on I are non-equivalent
and Il N, & e , This implies that the set V is unboun-
ded in (L, - 1) ; Y is linearly bounded since it is
bounded in (L, A+ ), Hence V is an absolutely convex,
linearly bounded, unbounded closed body in (L ,l-ll), Let
UsfxeX: Ixll £43 , Then C = con (Wl Y ) is an abso-
lutely convex body in (X, llell) . Suppose that C is not
linearly bounded. Then C contains>a line J through 0 .
Let x € J . For each integer m , mx € J and hence
mX= A X, +(1-A, )y, for some, € f0,43,xs u .,

. K-l
WYy € Y . Since m,'qﬂm.xm’

9m'4(4—2,w)qrm-!:-l—>x. YV is ll*li-closed and

0 , we have V 3

hence x € ¥, This implies that J € V , a contradiction
to the linear boundedness of Y .. We have proved that the
set C must be linearly bounded. Hence its Minkowski func-
tional |«| defines a norm for X . The inclusion W c C
implies |+1 & L+l , Since C is unbounded in (X,N-lf),
the norms el a&and Il- Il are non-equivalent.

The part of the theorem concerning the completeness
follows from the open mapping theorem.

Theorem 4. Let X be an infinite-dimensional linear
space and C a non-empty absolutely convex, linearly boun-
ded, finitely open subset of X . Then there are two norms
l-1 and el on X such that ¢ is open in (X, I-W)
and nowhere dense in (X, 1-1) and l«<l & ¢l .

Proof. Let H+ll be the Minkowski functional of C .

It is a norm on X , It is sufficient to use Theorem 3 and
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then Proposition 1.
Theorem 5. Let (X, A-H#) be a normed linear space of
infinite dimension. Then there is a non-empty absolutely

convex finitely open bounded and nowhere dense subset L of
(X,h-4) .

Proof. Let Il - (il be as in Theorem 3. It is suffi-
cient to set C = {xe X: llxlll <4% and apply Propo-
sition 1.

Corollary. Let X be an infinite-dimensional linear
space. Then: ‘

1. there is neither a minimal nor maximal norm on X
(a norm i« on X is said to be minimal [maximall if for
any norm M+l on X there exists X > 0 such that
e XW-MCXM-W&H-N] ),

2. the strongest locally convex topology on X is not
normable;

3. if (X,%¥) is a locally convex space of minimal ty-
pe (see [9], Chapt. IV, Exerc. 6), it is non-normable.

Remark. Any finitely open convex subset of X is open

in the strongest locally convex topology on X . Hence there
is no finitely open non-empty convex subset of X which is
nowhere dense in the strongest locally convex topology. The
second part of our corollary is not the best possible re-
sult; see [9], Chapt. II, Exerc. 7.

Examples. 1. Let @ be a compact subset of R™ (n & 1)
with a positive Lebesgue measure, mes G > 0 , X the li-
near space of all continuous real-valued functions on G ,

K-l the sup normon X, o] = “"L._',(G) (fp2&1) . Then
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lel & II- Ml and these norms are non-equivalent on X.
(Hint: For any € > 0 , there exist disjoint closed sub-
sets Mg, N; of G such that 0 < mev Mg < € ,
men Ng > men G - 2€ . Let 4, € X be such that
atg gy = 2e)™, ugly = 0,064 & (2e)-"" .

Then Nucg I = (207", fagg 1 m (U 1oty ()Y &

& (2e .02 =1,

Another hint: If both norms are equivalent on X = C(G), then

C(G) is a closed and dense subspace of lq’CG). This
leads to a contradiction.) By Proposition 1, C = {xe& X
:lxll <« 1% is a finitely open, absolutely convex, nowhe-
re dense, bounded (non-empty) subset of (X ,[-() .

2. Let G be as above and 1% p"< p < p' € © .
Set :
X =Ly (@), Nehm Bk, Mo lm Coman 65700

and [+l = (men GY'R=91" ¢, |

Ly €& 7
ko () Then |«] £ .U £
@a -l , Any two of these norms are non-equivalent on

X . (Hint: By [8], § 12, Sect. 1, we may restrict oursel-
ves to the easy case G = [ 0,1].)

3. Let

4 ﬁ,fg.”<,fp<,fx.'§m, x.-l.’,, ,l\‘ﬂ-ﬂvﬂxﬁ, lo] = ﬂ'u‘”' ,
and W:WaBoly Then I-1& N-1 & 0-0 andany two
of these norms are non-equivalent.

Remark. Do'ea Theorem 4 hold with "absolutely convex"
replaced by "convex" ? This leads to another question. Is
the absolute convex hull of a convex linearly bounded fini-
tely open set linearly bounded? We conjecture that the an-

swer is (generally) no.
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If . Iy and | nﬂ1 in Proposition 2 are non-equi-

valent, does there exist a "monotone continuum" of pair-

wise non-equivalent comparable norms ? The answer is yes,

when N+, (i =0,1) are the Lp,-norms on X = Ly,

(41.°<41.1) or the ‘m -norms on X = 14,1 (p, > 1) .
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