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Commentstiones Mathematicae Universitatis Carolines 

12,4 (1971) 

ON NORMS AND SUBSETS OF LINEAR SPACES 

Josef BANES, Praha 

J. Zem6nek has given [10] an example of a non-empty 

finitely open and nowhere dense convex subset of a normed 

linear space. Some general theorems concerning the exist­

ence of comparable non-equivalent norms in infinite-dimen­

sional spaces give a possibility to construct simpler ex­

amples of that type (see Proposition 1 and Examples 1 - 3 

below). 

Throughout this paperf X denotes a real linear space. 

Let_(5 be a subset of X . 6 is said to be: (1) finitely 

open (see £6j, Definition 1.10.2) if each finite-dimensio­

nal affine subspace L of X intersects d in a set open 

in L (in the unique linear topology on L )> (2) linear­

ly bounded if its intersection with any line is bounded 

(as a subset of the line). The convex hull of 6 is deno­

ted by ccn/tr G t dJLam>n R d denotes the diameter of (j in 
M M 

( X , I • 1) , where I • B is a norm on X , "• *n deno­

tes the convergence in the topology given by.. J.*Jt .• G is 

said to be l - l - F if fir is F in CJC, I • I) where P is 

a property of subsets of X (we shall use F * weak, boun­

ded, open). G is a convex body if it is convex and has a 
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non-empty interior in ( X , II • $ ) * 

We begin with 

Proposition 1. Let II • l0 and II • 1̂  be two non-equi­

valent norms on a linear space X such that I • l0 & 

£ K H • I,, (for some K > 0 ) - Then C » 4* c X s I* ̂  < 4 I 

is a finitely open nowhere dense absolutely convex (non­

empty) subset of C Xf I • IV) . Clearly, X must be infini­

te-dimensional. 

Proof. Clearly, C is absolutely convex and non-empty. 

Since C is open in ( X , II * IV ) it is finitely open. Let 

C0 denote the closure of C in ( X, 1 • Ŝ  ) . For each nj, c 

e C0 there is x e C such that Ity-x^^ < 4. Then 

1*1, ^ll^-^tt^lU^l^il^-^^ + K H ^ I I ^ O X . 

Hence C0 c (K-t A ) C . Suppose that Ĉ  has a non-empty 

interior in (X,II*IV ) .Then the absolute convexity of C0 

implies the existence of some M, ._> 0 such that {x m X : 

t llx ll0 -c Jk, I c C0 . This and C, c CK •* 4) C imply 

that II• 8,, £ fc""* CK + 4 ) IU ll0 f a contradiction to the 

non-equivalence of both norms. 

Proposition 2* Let I •Up and II • IV be two norms on 

a linear space X such that I'ljj -iXI'l^ ( K > f l ) • 

Define « • I. » C4-t)l •!* + t I • 1. for 0 4* t & 4 . t 0 i 

Then 1° | * r f t * C 0 f 4 1 are the norms on X f 2° I • L -£ 

-S K ( ^ , t 1 ) II • llt for 0 ^ t^ 4 t£ £ 4 , where KCt^, t^ /« 

=. t t ^ + K C I - t , ) ! Cta-t-KC4--t1)r ' r ,30 I ' l t * * f c t ; 4 l « l t i 

for 0 < t ^ tft ^ 4 f and hence the norms I • fit and II • l t 

are equivalent, 4° if the norms I • l0 and H • l^ are non-

equivalent, then %*\0 and l « l ^ f t 6 CO, 43 , are non-

equivalent* 
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The proof goea by a direct computation. 

Propoaition 2 says that two comparable norms can be 

joined by a "continuum" of pairwise equivalent norma. 

The following two theorems were first proved in our 

thesis [j] and published without proof in 14]. 

Theorem 1. Let CX, A* II) be a normed linear space 

such that its dual space X * is separable. Then there ex­

ists a norm II • 11̂  on X 8uch that the II • I)-weak topo­

logy and the II • 1!̂ -topology coincide on the II-||-bounded 

8ub3et3 of X , and H • IL̂  ̂  II • II . If X haa an infinite 

dimenaion, then the norms II • 11̂  and II • II are non-equi­

valent. 

Proof. Let {-û ? be a dense sequence in the unit ball 

of X* and Hxll^* a j ^ 2-^1*^00.1 for x in X . It is 

easy to aee that 1 • t^ is a norm and I • i^ 6 II • I . Let 

J\l be a 1*11 -bounded subaet of X, x0 a point of .M .If 

V is a weak neighbourhood of x0 in M then there exist 

e > 0 and f^.^f^fi X* , H^lmA (j,m49„.9m) such 

that W J - U e M j l f ^ ^ - ^ K e for £ « 4,.,,,,m,1cW. 

Clearly, 1/L is a weak neighbourhood of X0 in M , Without 

los9 of generality we may euppose that M contains at least 

two points. There are integera *&*%•• •*M'm, auch that 

- N a 

8^/no,- H " * 6 C^diam^JA) *OT £ « 4,.,,,/m . Let 

Hm4 + ma#tm~ii*.'>*hm,i **& Vmi**NL* H x - X ^ < h 2"ni 

We shal l ahow that % DV . Let x e V * Then 

r ^ \(u^-£i)(x-x0) + ti(*-xo)\Atx-xot„< ^rH4t\%"^ 
for £m49...7mv. Since I(4C^-^)fc~*0}f Aiu1nij-fjtilx-X0i<t/4>f 

there ia Hj,(x-X0)l < - j t r < 6 for &m 4v..fm. . Hence 

# eWj and V c W^ c If. Conversely, l e t V*» { # £ M : 
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• IU-IX^I^ < & J Ce ̂ 0 ) be a I • 8^-neighbourhood of X0 

in M • A direct calculation shows that V contains V m 

• { ^ f f M i Z ^ i ^ U ^ ^ - V U e ^ / i ? where m% is so lar­

ge that «rf 2T*+* diam, M < fr , Clearly, W is a 

B#i -weak neighbourhood of ̂  in M # Suppose that X is 

nfinite-dimensional and the norms II • IV, and 11*1 are equi-

/alent. Let us denote X**» (X,!!'8) and B-»<«xcX. IUI 6 4?. 

Then 

(B ,M; - i (B,r(x,x*;> 

(B,|.lv) 

is a commutative diagram of topological spaces and continuous 

mappings; (B,t?) denotes the set 3 with the topology indu­

ced by the n -topology of X . Thus, the three topologies 

1*1 , 1*1^ 9 and *yCX,X*) coincide on B , a contradiction 

to the infinite dimensionality of X (see £5J, Chapt.V, 

Exerc. 7»9)« Hence the norms 8*1^ and I • I are non-equi­

valent. The proof is complete* 

Theorem 2. Let (X, 1*1) be a separ&uie normed linear 

space. Then there exists a norm 8*1^ on X such that the 

II • I -weak topology is on I • II -bounded subsets of X 

stronger than the 8# 1^--topology, and l*lv 6 1*8 . If 

X has infinite dimension, then the norms l*l«f and H* It 

are non-equivalent. 

Proof. By tl], Chapt.lII, Theorem 9-16 the unit ball 

of X * contains a sequentially tT(X*,X) -dense sequence 
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(X* ** (Xf >•!)*) $ let & s KjuA be such a sequence, 

and set 11*11^. .£*, r^l-tt^C*)! for x in X . Let 

0-MeJC. Then there is £ € X * such that l_c(#)t -

m e > 0 . Since TR,5 » {fc.44,,̂ ;/t c "R.,<n-«? 4,-2, ...$ is 

ff(X*,X) -dense in X * ,there exist >t c 1R and .u,^ 

such that n,u*^ lies in the 6"CX* X) -neighbourhood 

U * € X * ' t ( x * - . f ) 0 < ) f < S ? of £ . T h e n U ^ f * ) ! * If(*>l-

-MJLJUI,^ -f)(*)l>0-* Hence IU»<lcr> 0 , and II• 1^ is a 

norm on X . The proof of the other assertions of the theo­

rem is the same as that of the corresponding assertions of 

Theorem 1. 

Theorem 3 below is the precise statement of the re­

sults of the proof of Proposition 1.1 in £21. That proof 

relies on a paper of V. Klee £71* tfe repeat their proof ma­

king use of Theorem 2 instead of £71. 

Theorem 3. Let ( X, IV II) be an infinite-dimensional 

normed linear space. Then there are two norms 1*1 and 

III • 111 on X such that VI ̂  IV M ^ III • ill and none 

of them is equivalent to II • II . If K • II is complete (that 

is, ( X , I V H ) is complete) > the norma VI and III • III are 

not. 

Proof. Let B be a Hamel basis for X such that 

11*1 £ 4 for all r̂ c B and 4*ii-Cllrl . Hr m 3 f » 0 . It 

is easy to verify that 111 • III defined as the Minkowski 

functional of the absolutely convex hull of- B , satisfies 

our requirements. 

Let L be a separable infinite-dimensional subspace 

of ( X, i * X) , IV t^ • the norm of Theorem 2 corresponding 
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to ( X,, 1 • It) , and V m ix e L t \\x 11^ £ A 1 , By Theorem 

2, the norms B • l ^ and 8*1 on L are non-equivalent 

and II • IL., & II • 1 • This implies that the set V is unboun­

ded in ( L , II • II) j Y is linearly bounded since it is 

bounded in ( L . , II • IL̂ , ) # Hence V is an absolutely convex, 

linearly bounded, unbounded closed body in (L ,B • H) , Let 

U « { * e X s l l M l f & 4 f * Then C m am, ill u Y ) is an abso­

lutely convex body in ( X , II • II ) , Suppose that C is not 

linearly bounded. Then C contains a line J through 0 • 

Let X € 3 . For each integer en, 9 tnx & 3 and hence 

tnx** 3L.X-* H - &„,) <**>„, for some Ji^e lQ,41,xe 11 , 
i • It 

/j^« V « Since /n~i A^x^ «— -> 0 , we have Y 3 

V mT* C i - a ^ ) /%,„, *** > * . V is II • II -closed and 

hence X € V . This implies that 3 c Y , a contradiction 

to the linear boundedness of V ., We have proved that the 

set C must be linearly bounded. Hence its Minkowski func­

tional |• I defines a norm for X . The inclusion VL c C 

implies I • I £ II • l , Since C is unbounded in (X * ! * ! ) , , 

the norms [•[ • and II • II are non-equivalent. 

The part of the theorem concerning the completeness 

follows from the open mapping theorem. 

Theorem 4* Let X be an infinite-dimensional linear 

space and C a non-empty absolutely convex, linearly boun­

ded, finitely open subset of X . Then there are two norms 

I • | and II • It on X such that C is open in (X} II • II ) 

and nowhere dense in (X, t • \) and I • I & It • II . 

Proof. Let It • It be the Minkowski functional of C # 

It is a norm on X • It is sufficient to use Theorem 3 and 
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then Proposition 1. 

Theorem 5. Let (Xf II • II) be a normed linear space of 

infinite dimension. Then there is a non-empty absolutely 

convex finitely open bounded and nowhere dense subset C of 

C X , It'll) -

Proof. Let III* /!! be as in Theorem 3. It is suffi­

cient to set C m iot c X : III* III < A 1 and apply Propo­

sition 1. 

Corollary. Let X be an infinite-dimensional linear 

space. Then: 

1. there is neither a minimal nor maximal norm on X 

(a norm 1 • R on X is said to be minimal [maximal] if for 

any norm HI • lit on X there exists K > 0 such that 

II- « *KI!I-IH C Kill-III * 1-13 ); 

2. the strongest locally convex topology on X is not 

normable; 

3. if (X'ptf) is a locally convex space of minimal ty­

pe (see [92, Chapt. IV, Exerc. 6), it is non-normable. 

Remark. Any finitely open convex subset of X is open 

in the strongest locally convex topology on X , Hence there 

is no finitely open non-empty convex subset of X which is 

nowhere dense in the strongest locally convex topology. The 

second part of our corollary is not the best possible re­

sult; see £9lt Chapt. II, Exerc. 7. 

Examples. 1. Let (? be a compact subset of TR*V (m* fi. 4) 

with a positive Le be ague measure, mx/9 G > 0 , X the li­

near space of all continuous real-valued functions on G , 

1 • I the sup norm on X , I • I •» II * S. ^ (<fv £ A ) . Then 

841 



1*1 ..5 II • II and these norms are non-equivalent on X. 

(Hint: For any e -> 0 , there exist disjoint closed sub­

sets M e , N e of 6 such that 0 -*- /me* M £ -< e , 

mat* H^ > /ma* G ~ 2 e . Let u>B e X be such that 

<«B>Mg- C H e T ^ , ^l|r4- 0 , 0£ *u€ .4 C 2 e ) " ^ . 

Then E l ^ l - C 2 e r ^ , \«t\m(/iS%\u%C*)li*dK>4*'* 

* C2e . tltr*)"* m A . 

Another hint: If both norms are equivalent on X**C(G), then 

CCG) is a closed and dense subspace of L^CC?). This 

leads to a contradiction.) By Proposition 1, C - ix c X i 

;ll«KII < A I is a finitely open, absolutely convex, nowhe­

re dense, bounded (non-empty) subset of C X , I • I ) . 

2. Let 6 be as above and 4 4 <ft"< & <. ^i & oo . 

Set 

X --1^ C0>, II-1- II* »vca), »!• I"» C^n^ <5>^"
f^'ll- « ^ c a , , 

and M - O m ^ G ) * ' * - ^ * « * 1 ^ CQr) . Then |.| fe II < l( i. 

4& 11 • lit » Any two of these norms are non-equivalent on 

X • (Hint: By £8], § 12, Sect. 1, we may restrict oursel­

ves to the easy case Cr m t 0,4 J .) 

3. Let 

and ttl • Ill m I • L . Then t • I £ ft . II •£ 81 • II and any two 

of these norms are non-equivalent. 

Remark. Does Theorem 4 hold with "absolutely convex" 

replaced by "convex" ? This leads to another question. Is 

the absolute convex hull of a convex linearly bounded fini­

tely open set linearly bounded? We conjecture that the an­

swer is (generally) no. 
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If II • Jf0 and I • II in Proposition 2 are non-equi­

valent, does there exist a "monotone continuum" of pair-

wise non-equivalent comparable norms ? The answer is yes, 

when II • IV (i m 0 94) are the L^. -norms on X • L f 

f/fi^<^tJ) or the Z^t -norms on X m &^ C ^ > ^ ) . 
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