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CONCERNING RESOLVENT KERNELS OF VOLTERRA INTEGRAL EQUATIONS

J. NAGY, E. NOVAKOVA, Praha

In this paper, a class of linear Volterra integral
operators of convolution type is being investigated such
that the kernel of the operator satisfies a certain linear
ordinary differential equation with constant coefficients.
It is shown that for every such operator there exists a
linear ordinary differential equation, describing in some
sense the properties of the operator. The latter differen-
tial equation makes it possible to compute effectively
resolvent kernels of Volterra integral equations.

1. Notation. Let C denote the set of all complex
numbers. Let R, denote the set of all non-negative real
numbers. We shall denote by € the set of all continu-
ous functions £: R,—> C and by €™ (for % posi-
tive integer) the set of all f ~-times continuously dif-
ferentiable functiona £: R,—> C . Sometimes we write

€ instead of € . If x, 4 are integers, 0 <
£n & %, and £ € €% then the symbol £ deno-
tes the: A -th derivative of the function f . Especially,
£¢9 Qaenotes the function f  itself.
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2. Definition. Let a, £ be two continuous func-
tions. A linear integral operator T: € — € is defi-

ned as follows:

53
(1) Tx(t) = alt) + {b(t-b).x (B)d s .

3. Remark. The substitution @ =t - % in the
integral o.f*b'(t ~p)x(d)das gives

(2) o.;b(t—o)x(b)d./a -afx(t-u)b (w)daw

and the relation (1) becomes

t
(3) Tx(t) = a,(t)-f-ufx(t-,a)lr(m)d,b .

4. Lemma. For any non-negative integer 4 and for
any given functions a, & e ~e“", the operator T maps
€® " jnte €M, Moreover, for every 4« € ¢ &1

and its image & = Tw |,

t
(4) w(t) = a(t) +o./'9'(+.-/a)u.(4)d..o ,
the following is true:

~-d .
(5.x) ™) = e H® 0 L) + a™ct) +

+ of’b“”(t -Aaup)da .

Proof (by induction). The theorem on differentiation
of an integral with respect to a parameter ensures ‘that
the function » given by (4) is differentiable if a ,

, 4 & € ., The derivative of « is then
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t
w ) = 20w () + aVt) + LD t-B)u )b .

Thus the operator T maps €  into €< s hence

(5.1) holds. Now, let us suppose that

fe-2 .
(5.x-1) wr™t) = = LRED0y) Bty +
s
t
+ o™ )+ SR (- (I A

4 o) flh-‘”

holds and furthermore a, & € ) A & . Then the

function &1 is continuously differentiable and the
differentiation with repgpect to £ on both sides of
(5.k-1) gives

K2
v®(4) = éz‘, LR 200y 30ty . 4 * 0w (£) +
=

t
+a®™ ) e So®topdu (w)ds .

Substituting 3+ 4 —> 4  in the last equation (5.k)
is easily obtained.

5. Remark. From (5.k) and (2) it follows immediately

-1 . .
(6.x) ™) = 1‘z‘, L0 P (t) 4 a™(t) +

s
+ of.u, (t=-m) ™ (s)ds .

Supposing now a, .« € ‘8"'”, bree™ , and using (2)
to modify (4) to the form

t
n /v(t)-a,(t)-ra/w(t—)a)b(a)dnb,
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we obtain from Lemma 4:
) 1 ; 3) )
(8.x) () = 420 w*#000) 6Pty + a™t) +

+
-o-ofu.“"(t-b) b (n)dns .

This may also be written, using the relation (2), as
o1 . .
(9.k) (L) = .Zou“"""”(O)lr"’(t) +a®™(t) +
=
t
+ S - srds .

Relations (5.k),(6.k),(8.k) and (9.k) make it poseib-
le for the operator T to‘be conveniently characterized
by certain linear differential operators.

6. Theorem. Let A,, A ,..., A, be complex con-
stants and a, & e €°*’ . Let & be the eolution of
the initial value problem

L4
(10)“,?0.&,‘&‘”: 0, x™0)= ®0)= & ,h=0,1,.,m-1.

It we€™”

lution of the initial value problem

,  then the function ar = T«  is the so-

" m-1 n
o) (L 2 [ 2
() b%oA“' ¥ = u%o By 477 (t) +u§o A a™(t)

where

"
B“’ '5.5“1 Aé‘ "ré““-"
with the initial conditions

(12) v (0)=a (0), ¥ (0)= By e 0) sty o PO+ ... +

+b;.w“'"(0)+a.w(0), 1'--4,2.,..., m-1.
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Proof. Let
t

vt) salt) + S o(t-muwds .
Then, according to (6.k), there holds for all integers
O< = m
A o™= AS % u¥ct) s A a™er s Suct-mA 10ds

320 Mget ° A :

Hence, summing over all f¢ ‘s from 0 to m and using the

assumption "z'. A,.lr“"(b) = 0, we have
M=0 ’
n m | . "
(¢ ) - [C2) =)
“%QAL” t) .‘%’A” 50 %‘_41‘. (t)+h§.°A~a- t) .
From the Dirichlet’s formula for double sums we abtain
mn -1 m m
ey o @) )
o2 AT = DA T Ay F AT,

which is equivalent to (11).
7. Remark. If the function q also satisfies (10),
then (11) becomes

- ) ey ) <
13) Z Ay = Z BuCt); Bu=. = A pmeq -

Let Theorem 6 be illustrated by two simple examples.
8. Examples. 1. Let a € €?’ be arbitrary and

a2t t
k(t)sﬁqe‘o-ﬁzea", By By , 2y, A, € C .
Then %cf}‘-t-ﬁa, 1{‘-1‘1/34*--&2(3’,A°'ﬁ4ﬁ.2 ,
A4-‘ -(A‘i*hﬂ.)’ A2-4,B°-~(ﬁ1ﬂl+ﬂzﬁq),31- /31+ﬂ2 .

For any x & €’  the function
Ay6E~e)
n(t) = a Ct) -t-oft(ﬂ,en'(t*)-fﬂze T rx(mas
solves the following initial value problem

4P AR VA Ay m Ay, @l = (A0 2,)aN(E) +
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+a®(t) - (B Ay + B A,) X () + (B + B x P (t)
with the initial conditions
240 = a(0), a4(0) = a(0)+ (B, +B,)x(0) .
2. Let a(t) = ,’?.: a; t be an arbitrary polyno-
mial and & (t) = t:" .

Then &; = 0 for 4=0,1,...,m-2, 2y , = (m-1)¢

A‘- =0 tor 4=0,1,..m-1,A =4, B,= (m-1)!

B; =0 for 3=41,2,...,m-1.,
For any x e € ‘™1 the function

y(t) = ¢c¢>+.fcc 2 x(prd s

solves the following initial value problem

= (m-1) x (), 4P 02 aP Vg la;, G=0,1,0,m~1.

9. Remark. Theorem 6 may serve as a useful tool for
the computation of fixed points of the integral operator
(1) or, which amounts to the same, for the solution of a

Volterra integral equation of the second kind. Actually,

a function x € €™ is a fixed point of the operator
T iff x is the solution of the equation

*
x(t) =al(t) +0./'b(t-k)x(,:)d/», t =20

It then follows from Theorem 6 that x aoclves the

initial value problem
2 ’ pd Y
(14) o Cau %™ = = Ay ™t
h-Ab %44 5%41 *""04’“’7’"'4 c -Am.’

with the initial conditions

-1
(15) X (0) = 2 (0), .x“’cm. 8, 0l ¥
4= 4,2,000, mo1

x™%0)+ a¥0),
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The two examples in 8 show that the solution of

t Qctn) a,(t-s)
X(WD=alt)+ S(B e '34-[.!2_e‘l X srds

may be found by solving the initial value problem

2P (A 2 e BB XA, BN, FBA I X =
=2, q, a(t) = (A +4)a®t) ¢ aP (),

x(0)= a.0), x™A0)= (B + 3,72 (0) + 2 (0)

Similarly, the solution of the integral equation
me1 . + et
x(t)=a Z ath+ S(t-A)""X(D)dr
+s0 * 0
may be obtained by solving the initial value problem
L™ (-t x =0, xHOmglay, j=0,4,..,m-1 .
n .
Since the kernels of the type & (¢) -15_4 B ea‘t
occur quite frequently in many practical problems of the
control theory, an explicit formula for the corresponding
initial value problem is given below.
10. Example. The solution of the integral equation

t . ;Ctn)
.x(t)-a.(-l:)-o-of (‘,“:z.':{siea" dx(add s

may be found by solving the initial value problem (14),
(15). The numbera A, in (14) are now the coefficients
of the polynomial

P = B A2t T a-ap .

It is known that the coefficients Ah may be expressed
by the roots A. aa follows:
A, =1,
A =(-* =  a;,a
m-f vy

. Lirigrmin
4 <dg<ciy

"‘.., a’-“, h’4,2,.¢a, mn .
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The numbers &, , Q = a®(0) in (15) are gi-

ven by the relation

-4 o
!r“-&ﬁp;a‘ ’ h=0,4,....,m-1 .

11. Remark. In the analysis of a linear integral

equation

(16) x(t) = a.(t)-r.ftb'(t-b)x(e)d./a

a very important role is played by its resolvent kernel
X given as a solution of a linear integral equation
AN k) = B ) + S U - B R BIdA .

It is well-known that if a function A is a resolvent

kernel of Equation (16), then the solution x of (16) may

be expressed as
t
(18) xE) = alt)+ Sult-rlalnldnr .

Since the resolvent equation (17) is again a linear
Volterra integral equation, Theorem 6 or its modifications
in Remarks 7 and 9 may be applied. Thus the following theo-
rem may be formulated:

12. Theorem. Let the function & e €™ pe a solu-
"
tion of the equation u§ o A, x %) . 0 . Then the re-

solvent kernel nx of the equation (16) satisfies the ini-

tial value problem

(19) b%o Cu.x =0 > c‘_-A.,-’-,. _'_4A5 ‘ri—~~1 )
é = 0,4,'.-, In'-", c“ = -A-n ?

with the initial conditions
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3> -
(20)  »?%0) = =

S b0 00), G204, m1,
where ~SV(0) = 4 .

13. Remark. It may be seen that finding the solution
of the initial value problem (19),(20) for the resolvent
kernel is easier than solving the initial value problem
for the solution of Equation (16) itself. Moreover, if the
resolvent kernel s of Equation (16) is known, any solu-
tion of Equation (16) with an arbitrary right hand side

a(t) is found by integration using Relation (18). On
the other hand, when using Equation (14), the correspon-
ding particular integral of this equation has to be compu-
ted for each particular choice of the function a (t) .

Now, let us apply Theorem 12 to find the resolvent
kernel of the integral equation from Example 10.

14. Examples. 1. The resolvent kernel of the linear
Volterra integral equation

t m a;ct-a)

(21)  a)=alt)+ S(Z Be Yx (A)ds
satisfies the initial value problem (19),(20) with the
coefficients Aﬁu Rr,. described in Example 10. In a
special case, e-g. for m = 2 , the initial value pro-

blem has the form
(22) &P (A +Ay+ B+ B) x4 (A, X+ B2, ¢ 3, 2)x=0,
x(0) = (3 + 3, , x(0) = (@3, + @)+ B2, + B2

Let @, , ®, be characteristic roots of Equation (22),
@, * &, The resolvent kernel A is then
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“t, K, e

n(t)=K e 2 ©
with
K= a=es LB, + B+ B A+ By Ry - (B+B) (4 T 5
il +B3) @, - (BB =B =Ry ] -
In the special case A (t)=1-e-t which often

occurs e.g. in the theory of phase controlled oscilla-
tions, the resolvent kernel is obtained as the solution
of the initial value problem

2P P x = 0, x =0, x0) =1 .

4 Vi 4-1/3
> 1 =

nel a2 of the 1ntegral equation with the kernel & (t) =

Setting = the resolvent ker-

t

=4-e has the form

1 oyt @yt
ni(t) = —= (e  -e ) .
V5
2. The resolvent kernel X for an integral equation

mn .
with the kernel 2r(t) -420 a;t* wmay be found as the so-
=

lution of the initial value problem (19),(20) as follows.
The polynomial R is the solution of the differential
equation x“**"” = 0 . Thus Apo,=1, Ay =0 for
=0,4,0,m, tg = !lag for k=0,1,..., m .
Hence, fo\r the coefficients C“ of Equation (19) we ob-
tain

. o
Co=4, Cu=Aania '55&04*4515-4--&4’_(“-“! %-1
for v =4,2,..., m+41 .
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Thus the resolvent kernel solves the initial value pro-

blem

4 -
g 1™, kP m- e, X mla,x=
=0,
, &
b} . k-1 .
x@ (0)-.}0(3-3;)!0,’-_.& €0), 3=0,4,2,....,m .

3. A procedure similer to that described above leads
to differential equations for resolvent kernels of inte-
gral equations having kernels of the type o) =Pt) e
with P(t) a polynomial of the degree m - 4, It is ob-
vious that the function £ is a solution of an ordinary
linear differential equation of the order m with con-
stant coefficients

< S . m M  (m-fe)
W2y 1 () A =0,
with A  the characteristic —oot of multiplicity m
Hence
o m,. % 23 * Ry pih-g) Py
A“_ns("4) (h).&, 1’“-” (0)85;0(1")? "(0).7t ;

C==-D(Tra*~

4 . . oot , .
WS NG RF (R p R0y a®

Now, substituting these values of the constants Cn ,
&, into (19) and (20), the initial value problem for
the resolvent kernel is obtained.

15. Remark. The method described above leads to al-
gebraic equations, whose roots will eventually have to be
computed. Here we meet with the same difficulty as when
using the Laplace transforms. Notwithstanding, in several

special cases our method is more convenient and the pro-
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cess of computing the resolvent kernels is very simple.
The procedure just described may be modified in many ca-
ses in a variety of ways depending on the special form
of the kernel. One of such modifications will be shown
in what follows.

16. Example. Take the same kernel as in Example
14.3, that is, (t) = P(t)e™* and the resolvent

equation in the form

(22) n($) = P(trePt + e flo(t BIP(s) e dn

where € may be either 41 or -4 Setting r(t) =
- (t) = En(t), wu(Bea®)sPHE” into (5.k) we obtain

A%y = "éo 01 (P(t) &M P (B(1) EY™ sf/o LTI IR THe
,'

Denoting AS"(0) = € and introducing the abbreviated
notation x%(Q) = K, for 3 = - 1,0,1,2,... 3

Hy (4) = esg’o w40y (P(+) &™)

we have

Mo 3 : .
#yp@ e ot _
Ha () n 0, % muj £ cHrPwarte

} Y s . .
@ - 2L _ At
f ‘.’.gf (t)i:ig&“.‘.__'(%)-ﬂ- e

L ®? ™
P*(e) rz at
~ 0T Z 3(G-1)..(3-2+ 1 *'i" e =
R DR 4y at
. ‘,153_;..}1’. 0 e ,

where
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(23) G (2)= 8.7C1) -4_2': P @’{1)=5%6(5-4 ).

e olGo@e I ng 4 2TE
Clearly, the polynomial G’C2) is the gq -th deriva-
tive of the polynomial akcn) . Thus the fo -th deri-
vative of both the sides of the resolvent equation (22)

may be written in the form

) @)
P & PYrt) @y (A)  at
(24.x) w®(e) = "g,?‘o ——-"'———-q’! e

t .
+ e/ a®™(t-m)Pn)eMdns .
]

+

17. Remark. Equation (24.k) appears to be a very use-
ful tool when investigating the various qualitative and
quantitative properties of derivatives of the resolvent
kernels of Volterra integral equations having kernels of
the form P(t)e??t . One illustration of such appli-
cations is given in the next example.

18. Example. Let us investigate the following pro-
blem. Does there exist a polynomial P(t) = a, + e t+..
etay et

resolvent kernel x , corresponding to the Volterra kernel

of the degree A -1 such that the

(t) = PCt) et , will also be a polynomial of the same
degree? We shall find the conditions of the existence of
such polynomial. Since ) is required to be a polynomial
of the degree fe — 1, its S -th derivative has to be

~)

identically zero. Since the function rn is a solution

of Equation (24.k), the following must hold:
n PR @)
s P*t) QQ (A)

€ e‘“ =0 .
a0 Q,!
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Hence all coefficients G:f’(.ﬂ.) for @ = 0,1,..., % ~1
have to be zero. Thus A is the root of multiplicity
& of the polynomial @, (A) . Consequently,

O.b(.x)-e.(.x-.ﬂ.)‘“ . Comparing this with (23) we obtain

2 s . : i .
o L ZYM D o X i B @
8y, (0 = & (x- 2= & Z P et 2 5T

so that

Mg ™ u-4>""’<§3).a“'*, G=0,1,.0, S .

Setting i+ = o~ 4 -1  we have

Since the number —;"—'r is the 4 -th coefficient of

the resolvent kernel & , we have finally obtained an ex-

plicit formula for the resolvent kernel
o1 . <41 .
4y f 2 +
k-(t)-i.za( 1) e'(i«wf)—’—&. t .

)
Now, the coefficients a; = —Pﬂio—’- of the polynomial

P(t) remain to be found. Equation (22) may be rewrit-

ten in the form

£
P(t) = x(t) et snfm(t-h)e""“""l’(/a)d.ae ;

According to (5.k), the A -th derivative of P(t) is
bt ) )

PV s - 6.5 P*F00) k) et P e (n ) AN -
}.

- vs'/'n(f-b)é"‘“"”l’“’(e) ds .

Setting
- )
Projer for POFP0), 52 0,4,..., beot, PUOE = -k,
we obtain :
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~ o
_ -at @
Hb(t,a)n aé%a Ph-é-q (e (t)e **)

L Py : .

= -e 2Rz (2) a®w)ar2e .

o “’(t [ ;
--e 2 —"7—)—51 4G limg s DR, . 1PN

fo @
where
= ~ (0) ol iop- i

(25) G- =Bl = Z 07 R, 2%,
and

82w = é% 3(G-1)eus (gt 1) By s AR
which is the q, -th derivative of ﬁh, -a) .

Since P (t) is a polynomial of the degree ¢ — 4 ,
necessarily P®¥(t)= 0 for all ¢ , and'hence, similar-
ly as above, ﬁ‘:’)(nﬂ-) =0 for all ¢ = 0,1,...
.., -1, Thus -A is the root of multiplicity f¢ of the
polynomial 5.“ (-A)

Hence and from (25) we have
5,:_"- g"(.& U g
’5% ey B akEad ’5:2"0 ' x*

and thus

Ry 23
Pr-4.« =-€(302

Setting 4 = M -4 -1 , we obtain
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P s Ai+4
Ql‘:"'.'t!_"-ﬁfi*q’ 1:! .

In this way, the following result has been obtained: for

each kernel of the form r(t) wP(t)e?®  with P(f) =
-1 et .
=" "«tgo (4{:4 ) 12—' t* the corresponding resolvent

kernel x is the polynomial

14-4-4

a1 o .
= - 4y »r hd
r(t) 8“:20( 1) (1.'_'_4) ] t .
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