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A SHRINKING OF A CATEGORY OF SOCIETIES IS A UNIVERSAL
PARTLY ORDERED CLASS

Ludék KUCERA, Praha

Introduction and summary. Partly ordered class
(P,%&) (i.e. a clasa P together with a reflexive

and transitive binary relation on P ) is called univer-
sal if every partly ordered class can be isomorphically
embedded into (P, & ) .

All partly ordered classes can be considered as
shrinking of categories:

If X 1is a category then a shrinking of X is a
class of objects of . X together with a partly ordering
& defined by a & & if and only if there is a

morphism of a from & into & .

In [1) it is proved that, under an assumption of
non-existence of measurable cardinals, the shrinkings
of binding categories are universal. A binding catego-
ry is e.g. the category of all algebras with m -ary
operations, m & 2 , and their homomorphisms. For the
definition of a binding category and the other examples
see [1],
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The main result of this paper is
Theorem 1. In the Gédel-Bernays set theory, the

shrinking of tne category of societies and their compa-
tible mappings ([2)) is a universal partly ordered
class.

(A society is a couple (X ,P) where X is
a set and P is a family of non-empty subsets of X .
A compatible mapping from (X ,P) into (Y, R) is a
mapping f: X — Y such that f(U)e R for
every U eP .)

The proof of the theorem 1 is based upon the theo-
rem 1 of [1) which says that the shrinking of the ca-
tegory Inc  (aee below) is universal:

Objects of Inec are indexed familiea of sets

(A ,iel), A, , 1 sets,

worphisms of Ine from (A;,<i e 1) into
(B;-.,a'. e€J) are all mappinga f: 1 — J such that
Ay D Byeyy

a composition of morphisms is a composition of

for every 1 el ,

mappings.

The theorem 1 is an easy consequence of

Theorem 2. There is a full embedding from Ine
into the category of societies.

(A full embedding is a one-to-one functor F : X —
~3 I, which maps X onto a full subcategory of L .)

The proof of the theorem 2 is dividod into three
steps:
1) A full embedding of the category of all sets and
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identities into the category of societies (§ 2).
2) A full embedding of the dual of the category of all
sets and inclusions into the category of societies (§ 3).
3) A full embedding of the category Inc into the ca-
tegory of societies (§ 4).

In the paragraph 1 we shall prove some lemmas. As
a consequence of the theorem 1, we shall construct a
simple universal concrete category (see (31) from bina-

ry relations and societies in the paragraph 5.

§ 1. Definition. A category Soe (m) , m natural,

is defined as follows:

Objects of Soe (m) are m + 1 -tuples (X,F,...,5,),
where X is a set and E,..., T,  are families of non-
empty subsets of X ,

worphisms of So¢ (m) from (X,E,..., Pn) into
(Y,R,‘,...,'KW) are all mappings £: X — Y  such that
f(U) e R, forevery ©=1,..., m and WePF, ,

a composition of morphisms is a composition of map-
pings.

Soce (1) (the category of societies) will be deno-
ted by Soc .

Lemma 1.Given a natural m ,there exists a full em-
bedding Soe (m) —> Soc .

Proof. It is proved in (2] that there is a connec-
ted rigid 2 -society (Z,S) (i.e. if x, 4 are points
of Z then there is a sequence Uj,..., Uy  of ele-
ments of $ such that x e W, , g €U, and U  n
N % g for 4=4,.., 4% ; only compatible
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mapping of (Z,S5 ) into itself is the identity; ele-
ments of § are two-point sets) such that Z has at
least 3m points. We can suppose without loss of gene-
rality that Z = {4,2,3,...,m} 6 where m = 3m .

A full embedding F s Soe(m) —> Soc is defined
as follows:

F((X,B,...,B)) = (Xx2,A,uA u..UA),
where UL € A, if and only if there is x e X and

Ve & such that U = {xix V ,
Ue A% if and only if there is Ve P; such
that W= Vx {34-2, 3i-1,34% for
Ai=4,....,m,
F(t) = £ x idE .

It ie evident that F is a one-to-one functor from
Soe (m) into Soc . We shall prove that F maps Soc(n)
onto a full subcategory of Soc :

Let M= (X,B,..., B, ) and N=(Y,% ,...,R.)
be objects of Soc (m) and 4 be a compatible mapping
from F(M) = (Xx 3 ,Aju...UA, ) into F(N) =
= (Y= Z,B,vu...0vB,) .

Elements of 'Aa have two points, elements of
B have at leaat three pointas. Therefore ¢

m
maps elements of A, onto elements.of B,

311'“7

If { € Z tnen 1,4 are connected by a chain of
elements of S , Therefore if x € X then (x,4), (x,4)
are connected by a chain of elements of A, , which im-
plies that +((x,4)) , #((x,4)) are connected by
a chain of elements of B, .

According to a definition of B, , the first coor-
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dinates of both ¢ ((x, 1)) and ¢ ((Xx,4)) are
the same. Hence there are mappings g s+ X— Y and
by, & — Z,xeX such that #((x,4)) = (é,(x) R
b, (1)) for every x € X , 1w 1,..., m .

Let X be an element of X, Then hy: Z— & is a
compatible mapping from (Z, &) into itself, because
if U €8 then
ixIxUed, , flxlx W) =m{g ) x A, (W) e 3, ,
which implies M, (U)e S .

Ase (Z,8) ia a rigid society, all 4, are the
identities, which implies that ¢ = ¢ x id' .

If 4 is a natural number leas than m and U ¢ P,
then U x {34 ~2,3{-41,343 € A; . Therefaore
$LUx$34-2,30-1,843)=g(U)x4£31-2,3{-1,%i3 e B, ,
which implies g (U)e R, .

Hence a mapping g ia a compatible mapping from M
inta N and ¢ = F(g) .

Thus, we have proved that F is a full embedding.

The next lemma enables us to simplify the proofs of
the theorems 2,4.

Lemma 2. There exists a full embedding of Soc
into itself such that for every different objects M, N
of. HBec the underlying setsa of F(M) and F(N)
are disjoint and do not cbntain 2 as an element.

Proof. A full embedding. Fr Soc —> Soc  1is
defined as follows:

If M=(X,P) ia a aocciety then
F(M) = (X 2 §Mt ,P) , where U € P’ if and
only if there is Ye P ouch that U = Vxxc {M} »
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it ¢ is a compatible mapping from M into N then
F() (Ux, M) = (£Cx), N) ,

The details are left to the reader.

§ 2. Theorem 3. There is a full embedding of the
category of all sets and identities into Soc .

Proof. It follows from the axiom of choice and the
lemma 1 that it is sufficient to construct a full embed-
ding P from the category of all ordinals greater than

41 and identities on them inte Soc (3) .
A set of ordinals lesa than m will be denoted by
L, -

A full embedding F is defined by
P(m) = (L, ,2(m), €L,3, (L, : % & m i),
where 2(m ) is a family of all two-point sets of car-
dinals less than m , F(id,) = (id .., ) .

It is evident that T ia a one-to-one functor.
Let m. ,m be ordinals and § be a compatible map-
ping from F(m) into F(m) .

¥ is a one-to-one mapping, because if p<q<m
then {n,qt e 2(m), $({pn,qf)e 2(m) , which im-
plies #(n) 4 £(q) .

f maps L_ onto L, ,aince L, e {L,}, which
implies #(L )e {L,%}, #(L,) =L, .

¥ is monotone, because if p < g <m and
£(g) # #(nn) then there is L <m auct that L, »

- 'F(L") (aee Lo e (Lt @ m1 ). Therefore
() e f(L,) and there is 4 < ¢  such that f(g)=
= ¥(») , which is a contradiction.
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As f is a monotone-1~1 mapping of the well-ordered
set I, onto the well-ordered set L, ,it is m = m

and f is the identity.
Thus, we have proved that F is a full embedding.

§ 3. Theorem 4. There exists a full embedding of
the dual of the category of all sets and inclusions in-
to Soe ,

Proof. Let F be a full embedding of the catego-
ry of sets and identities into Soc (Theorea 3).

Denote F (X) by (.Sx , Rx) . According to the
lemma 2, we can suppose that f & S,, 5, n 8 = 4
for every different sets X ,6 Y ,

It is sufficient to construct a full embedding G

from the dual of the category of sets and inclusions in-

to Soc (3) s
G(A) = cmzuu%s,,
“Upst, 4401 o Sy, *e A3y L83},

LR, K10 Y 80,

G(AoB)«)= —— u if there ia x ¢ B such that
“wes, ,

# if.L.ae8, formo xeB .
$=sG(AD3) is a ccnpitiblo mapping from
F(A) into F(B), because f(F) = #, ¥+ maps S,

X € A either identically onto §, or onto 4 aend
waps the underlying set of G(A) onto the underlying
set of G(B) . ' '
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Thus, ¢ is a one-to-one functor.
Let A, 3 be sets and ¥ be a compatible mapping
from G(A) into G(B) .
It is obvioua that (@) = @ . If x e A then
{Ptu s, e figtus,, xeAs uicdiz.
Hence either #({J3u 8, ) =403vu S, , weB or
f(4f1 v 8,) = {73 . In the first case, a restric-
tion of ¢ ¢to $x ia a compatible mapping from

(8, ,R,) inte (&, ,R, ) and from the properties
of P it follows that z = ar , the reatriction of ¢
to 8, is the identity.

If we S ,zeA-D then u ia not an ele-
ment of an underlying set of G (D) . Therefore it
must be F(w) = & .,

It is obvious that £ is onto {ﬂluﬁL‘/- S, . Hen-
ce if « e & ,x€ B then there is » e{fiv ), 5,
such that §(2v) = 4 . It is obvious that .« = 4 . Hence
itis $(w)=u, 2 €A .

We have proved that A > B andf=G(A 2 B).

§ 4. Proof of the theorem 2. Let G be a full em-
bedding of the dual of the category of sets and inclu-

sions into Soc (Theorem 4).

Denote G(A)= (T, ,F,), G(ADB) =~ g,4 -
According to the lemma 2, we can suppose that TA n T. =
= f  for every different asts A,D .

It is sufficient to conatruct a full embedding H
from Inc into Soe (2.



H(CA; , 1 el)=( T,

& (x:xc‘l;‘,acn,‘%l;),

"

H(f)(w) = %, (W) tor wueldT,, .

Bsciy <
We can see that H is a one-to-one functor.
Let (A;,ieI)=M and N= (B;,6 7eJ) be objects
of Inc and g be a compatible mapping from K (M)
into H(N) .
It is TA"‘ §X: Xc 1:*4. , v eI}  which implies
sF,('I;\h) eiX: Xc T‘i , 3 6 J3i.Therefore there is
a mapping $: I — J such that g maps T‘n into

T for e I.
Beem)

Evidently, a restriction of ¢ to TM» is a com-

P ) into (T’
§

patible mapping from ( T 7
T

P ).
. ’ (79T S

Therefore 'Ah. ) 3‘ e and g (u) = ?A.,b,m,(“) for
weT , Rel.
'

We have proved that H is a full embedding of Ime
into Soc (2) ,

§ 5. A concrete category is a couple (X, F) , whe-
re X 18 a category and F is a faithful functor from
X into the category of sets and mappings.

A concrete category (X, F) is called universal
if for every concrete category (L, @) there exists
a full embedding H: L — X  with G = FH .

Define a concrete category (WU ,E ) as follows:
objects of U are couplea (X, (A,, Rec Xx X)),
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where An are societies,
morphisms of U from (X,(AR, Rec Xx X)) into
cy, (B’, Sc Y>> Y)) are all mappings fs X—>Y
such that if R is a binary relationon X and $ =
= {(f(x), fly Vs (x,4)6 R} ia a relation on Y
then there is a compatible mapping from 'Au into 1% s
a composition of morphisms is a composition of the
éorrocponding mappings,
an underlying set of (X,(A, , Rc Xx X)) is X,
an underlying mapping of a morphiam f is f itself.

. As a corollary of the theorem 1 we have the next
theorem:

Theorem 5. The concrete category (U ,E) is uni-
versal.

The proof of the theorem 5 can be obtained from the
proof of the Theorem of [3] if we replace binary algeb-
ras by societies and homomorphisms by compatible map-
pings. Instead of Theorem 1 of [1] we must use Theorem

1 of the present paper.
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