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ON MINIMAL SEMIRIGID RELATIONS

Tomé43 WICHS, Praha

By a graph we mean a pair (X.R) , where X  Z is

a finite set and R & X x X 1is a binary relation on X.
The outdegree of x € X is the number od (x)=l{g:qy +x
and (x,a) € R3il, the indegree of x is the number
dd(x)=1{y: yp +x and (g,x) e R¥|. 1f (X,R)
and (Y,5) are graphs and f is a mapping of X into 7Y,
we say that f is a compatible mapping of (X, R) into
(Y, 8) if (f(x), f(g))e §  whenever (x,y )€ R.
If moreover f is 1-1 and alac -1 is compatible we say
that f is an isomorphism. (X ,R) and (Y,8) are cal-
led isomorphic if there exists an isomorphism f of
(X,R) onto (Y,$) ;notation (X,R)= (¥, S).A graph
(X,C) is a cycle of length m ( m is a positive in-
teger) if (X,C) X (£4,2,...,m3, i (4,4 +1);i= 1,2,..,m-13u
uilm,1)%) , the cycle of length 1 is also called trivi-
al cycie. A reflexive cycle of length m is any graph iso-
morphic to (£4,2,...,m}, {(i,i+1); 4 = 1,2,.,m-1% v
vi(4,4);i=1,2,...,m} u{(m,1)3) . The set of all
compatible mappings of (X ,R) into itself forms a monoid

(semigroup with a unit element) under composition, which
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is denoted M (X, R) . In the case M (X, R ) con-
sists of the identity and all the constant mappings, the
graph (X, R) is called a semirigid graph and R a
semirigid relation on the set X . 1In [1], there are
constructed semirigid relations on any finite set X + 4
such that IX| # 3,4 and proved there are no semirigid
relations on sets of these powers. (As since the publish-
ing of the paper [1] the terminology has stabilized so
that the expression "rigid graph” is now exclusively used
for a rather different notion (see [2],[3]1), we use the
term "semirigid graph" instead of "rigid graph" as used

in [1].) The semirigid graphs given in [1] possess the fol-
lowing maximal property which is an obvious consequence of
Lemma 2 in [1]: If S is an arbitrary semirigid relation
on a finite set X, |X) % 0,3, 4, then|S| & |x1+(%_“)

and this bound is the beat in an obvious sense. On the con-
trary, the aim of this note (besides of giving some further

properties of semirigid graphs) is to construct for every

set X, |X| <+ 0,3, 4 a semirigid relation R on
X such that for any semirigid relation S on X the
inequality IRl % I1S| holds. (In [3] similar ques-

tions were solved for rigid graphs.) We shall start with
several leumas.

Lemma 1. Any semirigid graph is connected.

Proof. Let (X,R) be a semirigid graph, assume that
(X,R) ia not connected. Denote X ,,..., X,  its com-
ponents, m > 4, Define a mapping f3: X — X setting
fx)=x for x6 X, v Xgu.o U Xy , £(X) =
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for X e .X1 , Where a is an arbitrarily chosen element
of X, . From Lemma 1 of [1] it follows that £ is com-
patible. Since f is neither identity nor a constant map-
ping we have got a contradiction.

Lemma 2. Let (X,R) be a semirigid graph, IX|> 3.
Then there are at least two different elements x, 4 in
X for which od (x) 2 2, od(g) 2 2 hold.

Proof: By Lemmas 3,4 of [1] there is an x € X for
#hich od (x) 2 2 . Assume there is no 4 ¢ X such that
o #x ana ot (4) 2 2 . From Lemma 3 of [1] it follows
that od (¢) =1 for 4 € X —{x} eand 4o (y) = 1
for 4 € X .Let x ,x,,..., X, ~ be all the different
points of X for which (X, X;) €eR, x4 X, ,4=1,2,...%.
Clearly o = od (x) = 2 . Define for < = 1,2,..., ke
the mappings @;: X — X in the following way: @, (x)= x;,
Qi (q,) = % for 4 #+ x , wvhere x is the unique point
of X far which n % 2, (g,x) € R holds. By Lemma
1 for every 4 € X there is an 4 among 1,2,..., &~
and a positive integer 4 such that 4 = Q: (x) .

In the case 0.2“ (X)) * X for every integer
m > 4  and for every 4 =1,2,..., do ,put f(x) = x and
£ (y) = x, for 4 + x.Obviously £ e M(X,R).

In the case there is an integer . such that there
exists an integer q2 > 41 satisfying the condition
af (x) = x ,Jjust the two following situations cen occurx):

(1) There is an £ such that m (<) = I1X!; (2) m (L)< |X]I

t) We denote by m (<) the smallest 41 with Qr (x) = X .
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for every 4 , for which m (<) is meaningful.

In the case (1) the mapping g+ X — X  defined
by ¢ (QF(x)) =x; (4 % 4 is a fixed number from
1,2,..., ) for & =4,2,3,...,2 (£ is the smal-
lest integer t for which 0.: (x) = X holds)
and g(y)= gy for p eX -405(x):n=4,23., 1%
is obviously a compatible mapping.

In the case (2) the two following situations will
be distinguished: (i) x is a cut point of (X,R) and
(ii) X 1is not a cut point of (X,R) . (i) The mapping

M : X —> X carrying one of the components of the
graph (X - {xJ (X -{x3] x(X-{x3DnR) into x and
being identical for all other points of X is evidently
compatible. (ii) In this case there exist i and 4,1 %4,

vt,3ed4,2,..., o1} and two integers g2, ¢, 1<
< fp £ q such that the following conditions are satis-
ried: (a) G (x) = @Y (x) ; (B) 4ab (G (x)) =1
for 1< x < fv , and id(a;(»«)):’l for 1< L < g.
Define e (Q;" (x)) = Qz(x) for © < p ,
e(a;‘c.x))= Qq"._ (x) for = f,nn+4,...,9q and
e(y) =y for yeX- {0,'; (x):n =4,2,...,93% .
Evidently e € M(X,R) .

As all the mappings f, ¢, &+, e are also noncon-
stant and nonidentical, Lemma 2 is proved.

Since semirig\id relations on sets containing more than one

element are reflexive (see [1], Lemma 1) we get the follow-

ing corollary:
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Corollary 1. Let m be a positive integer, m ==
4+ 3, 4 . Denote p(m) = min {IRI: R is a semirigid
relation on a set of the cardinality m 3} . Then m > 3
implies @(m) 2 2m + 2 .

Lemma 3. Let (X, R ) be a semirigid graph, 1XI| >
> 3, Then (X,R) contains a cycle of length m = 3.

Proof. According to Lemma 2 of (1] there is no dycle
of length 2 contained in (X, R ) ., Suppcse there is no
non-trivial cycle contained in (X, R) . Let us choose
a, € X . If for an integer o = 1 the point 4,
is constructed, then there is at least one x € X - {u,ﬂj
such that Cu, , x) € R . Denote by 4, ,s one of
these X ‘s. Since no non-trivial cycle is contained in

(X, R) ,the sequence {au,}2 , of elements of the
finite set X is univalent, which is a contradiction.

The easy proof of the following Lemma 4 which is
useful for proving semirigidity of a relation, will be omit-
ted.

Lemma 4. Let (C, R ) be a reflexive cycle, f a
compatible mapping of (C,R) onto (X, S). Then there
exists T £ S such that (X, T) is a cycle.

Theorem 1. Let ¢ be the function defined in Corol-
lary 1. Then @ (1) =0, ¢(2) =3, ¢(5) =413 and
P(m)=2m +2 for m = 6 .

Proof. @(41) = 0 since ({f7, d) is semiri-
gia. @(2) =3 follows immediately from Theorem 1 of
[11 and from its proof. From Corollary 1 we have @ (5)=2

Z 412 . However, by constructing all relations of the

power 12 on the set {1, 2,3,4,53% satisfying all
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the well-known necessary conditions for semirigidity, we
find out that none of them is semirigid (these considera-
tions are omitted for technical reasons). Therefore

P (5) 2 43 . As the graph ({4,2,3,4,5%, {({,4) ;
im0, §30AZ,541);4 =4, 43 UA(S, 1), (8,1),(5,3),(4,2)])

is semirigid, we have @ (5) = 13, Let m be an odd
number, m = 6 ,i.e.. m =2R+1, o = 3 . Put

X=44,2,..,.m3, R=4{(i,4); 4=1,2,....,m 5 v f€,441);
4 =1,2,...,m =13 U {(m, 1), A, e+4),(k + 3,2)%F .

let m beeven, m 2 6, m=2pn,p = 3. Put
Y=44,2,...,m3%,85=4(4, i) 4=14,2,...,m} u{ii,i+

+1);0=4,2,....m-130f(m, 1,1, p+1), (p,m)} .

Clearly IRl =2m + 2 , |S]l = 2m + 2 , since both the
graphs (X,R) and (Y,S8) are semirigid, we have
Pm)= 2m + 2 for m = 6 . The proofs of semirigi-
dity of all relations given here are easy (they can be e.g.
based upon Lemma 4) and therefore omitted.

I thank Z. Hedrlin and J. Nedetfil for their helpful

advice.
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