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Commentstiones Mathematicae Univereitatis Carolinae 

12,2 (1971) 

ON MINIMAL SEMIRIGID RELATIONS 

Tom6S WICHS, Praha 

By a graph we mean a pair (X.H) , where X -# 0 is 

a finite set and K £ X * X is a binary relation on X . 

The outdegree of x e X is the number o<t (x) =s \in^i QJ,4PX 

and C tX , (y,) € .R J I , the indegree of * is the number 

<<£ Cx)-=- K ^ * <tf =¥ x and C/^, x ) e X ? I . If ( X, K) 

and (Y9 S) are graphs and f is a mapping of X into Y, 

we say that f is a compatible mapping of CX, JO into 

( y, S ) if C f C x ), f (<$,)) e S whenever Cx*, y,) € £ . 

If moreover f is 1-1 and also f"* is compatible we say 

that f is an isomorphism. C X,R) and C y , S ) are cal­

led isomorphic if there exists an isomorphism f of 

(X,K) onto Cy, 5 ) .notation C X , R ) ̂  CT; 5 ) . A graph 

( X., C ) is a cycle of length m ( m, is a positive in­

teger) if CX,C)-2- «192,...9m,}9 iU9l+4)>9<i>~1,29...,«i-1lu 

ui(m,% Di ) , the cycle of length 1 is also called trivi­

al cycxe. A reflexive cycle of length /rt is any graph iso­

morphic to (HfZ9...9m,i9{U9l + 4 ) , * « 4,2,—> "t>-4* v 

u iU,4, )>9 4, * 1929...,m,1 u i C m9 4 ) I ) . The set of all 

compatible mappings of ( X , X ) into itself forms a monoid 

(semigroup with a unit element) under composition, which 

AMS, Primary 05C20, 05C25 Ref.2. 8.83 
Secondary -

- 359 -



is denoted M (X, % ) . In the case M C X , & ) con­

sists of the identity and all the constant mappings, the 

graph (X, JL) is called a semirigid graph and K a 

semirigid relation on the set X . In £ 1J, there are 

constructed semirigid relations on any finite set X -Is 0 

such that IXI -j=- 3,4- and proved there axe no semirigid 

relations on sets of these powers. (As since the publish­

ing of the paper [1] the terminology has stabilised so 

that the expression "rigid graph" is now exclusively used 

for a rather different notion (see [23,£31), we use the 

term "semirigid graph" instead of "rigid graph" as used 

in [I]*) The semirigid graphs given in £1] possess the fol­

lowing maximal property which is an obvious consequence of 

Lemma 2 in £1]; If 5 is an arbitrary semirigid relation 
m 

on a finite set X , IX I # 0, 3, k , then \S\ 6 IXI-K £> 

and this bound is the best in an obvious sense* On the con­

trary, the aim of this note (besides of giving some further 

properties of semirigid graphs) is to construct for every 

set X , IXI 4* Q, 3, 4- a semirigid relation K on 

X each that for any semirigid relation S on X the 

inequality IJU £ \S\ holds* (In £3] similar ques­

tions were solved for rigid graphs.) We shall start with 

several lemmas. 

Lemma 1* Any semirigid graph is connected. 

Proof* Let (X,R) be a semirigid graph, assume that 

£ X , X ) is not connected. Denote X^ .,«##, X^ its com­

ponents, m, > 4 0 Define a mapping f s X —* X setting 

f (x) - * for jc e X% u X^u.,, u Xm , f (X) ~ cu 
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for x e X. , where a* is an arbitrarily chosen element 

of X% . From Lemma 1 of £13 it follow8 that f ia com­

patible. Since f ia neither identity nor a constant map­

ping we have got a contradiction. 

Lemma 2. Let ( X, K) be a semirigid graph, IXI > 3 . 

Then there are at least two different elements x, ̂  in 

X for which oti (x ) £ 2 , oxt(^) £ 2 hold. 

Proof: By Lemmas 3,4 of CI] there is an x e X for 

tfhich oxL (x) £ 2 • Assume there is no t^, m X such that 

/u, + X ana oxL (<y,) *» 2 • From Lemma 1 of C1J it follows 

that od, (<y,) » 4 for ty, e X - •£ x J and 4d, C ^ ) 5 4 

for /£ e X . Let x x^ ,..,, x ^ be all the different 

points of X for which Cx, x. ) e Jl, x 4s X^ , -* » 4,2,...,Jfe . 

Clearly it » c*i (x) £ 1 . Define for <L m 4,1, .*., k, 

the mappings Q>± i X —• X in the following way: Q>^(x) ** x^ 

Q. (<w) 9 % tor a}, 4= x f where % is the unique point 

of X tor which ny 4. z, | (/̂, oc') €, X holds. By Lemma 

1 for every /jj- € X there ia an i among 4, 1, .*., Av 

and a positive integer /o such that y , m Q^ (x) . 

In the case 0,TV (.x ) # x for every integer 

•m, > 4 , and for every ̂ » 4,2..,..,, M/ f put f Cx) -a- »x and 

f (/̂ ) m x^ for ^ 4* x . Obviously i € M (X, H ) . 

In the case there is an integer -£ auch that there 

exists an integer 41 > 4 satisfying the condition 

fitv (x) * x , just the two following aituations can occur : 

(1) There is an I such that mv(i) - IX! ; (2) mvU)<: tX! 

t) We denote by *m,U) the smallest j(y with Q? (x) =- X . 
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for every I , for which mv(i) is meaningful. 

In the case (1) the mapping g. % X —> X defined 

by ty* (Q* (x)) ss x- (# 4* <> i a a fixed number from 

i929...9 Jk, ) for & **49293,;.7JO ( x> is the smal­

lest integer t for which ft* (x) * x- holds) 

and 9-C/ĵ ) » ^ for / ^ e X - { 4 * ( x ) J 4 i ^^2,^.^/tv J 

ia obviously a compatible mapping. 

In the caae (2) the two following situations will 

be distinguished: (i) x is a cut point of (X93L) and 

(ii) X is not a cut point of (X9H) . (i) The mapping 

jfo, « x —> X carrying one of the components of the 

graph (X - <x J/CX-CxIJ * C X ~ {xJJ)r.:R.) into x and 

being identical for all other points of X is evidently 

compatible, (ii) In this case there exist i and fr,i*»£f 

i 9 i> e i 49 2 9 ...9 M, } and two integers -ft", q,9 4 < 

< ft *k $, such that the following conditions are satis­

fied: (a) Qf ex) » a^c^<) . (b) <*£ c a * Cx); - 4 

for <( « A, < 41, ; and *<a£ C fl£ Cx)) * 4 for 4 < ^ < £ . 

Define e Cfit Cx )) * (jt Cx) for /& -c jtv , 
& <• 

eC(J|Cx))a- Qfi Cx) for /t, * jp, ,,p,+ 19..,9 £ and 

e (($,) m ry, for ry. € X ~ <Q% (x)t & *« 4, 2,..., % i . 

Evidently e C M (X , .K ) . 

As all the mappings f, Q, 9 M, 9 e are also noncon-

stant and nonidentical, Lemma 2 is proved. 

Since semirigid relations on sets containing more than one 

element are reflexive (see [13, Lemma 1) we get the follow­

ing corollary: 
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Corollary 1. Let ^ be a positive integer, m % 

4* 37 4- . Denote gpOt) a /mini, i \KI > X is a semirigid 

relation on a set of the cardinality m } . Then rrv > 3 

implies cp(srv) & 2trv + 2 . 

Lemma 3. Let ( X 9 K ) be a semirigid graph, IX I > 

> 3 • Then (X, Ji ) contains a cycle of length m, £ 3 . 

Proof. According to Lemma 2 of CI] there is no cycle 

of length 2 contained in ( X 9 & ) * Suppose there is no 

non-trivial cycle contained in ( X, X ) . Let us choose 

>û  e X . if for an integer ^v £ 1 the point AJL^ 

is constructed, then there is at least one x e X - iu,„t 

such that ^-u-^, -x ) e X # Denote by <"•>**+ 4 one of 

these oc's. Since no non-trivial cycle is contained in 

C X , & ) , the sequence f AJU~ 1*m^ of elements of the 

finite set X is univalent, which is a contradiction. 

The easy proof of the following Lemma 4 which is 

useful for proving semirigidity of a relation, will be omit­

ted. 

Lemma 4. Let ( C, R. ) be a reflexive cycle, f a 

compatible mapping of ( C , X ) onto ( X f S ) . Then there 

exists T -= S such that ( X, T ) is a cycle. 

Theorem 1. Let $p be the function defined in Corol­

lary 1. Then y C ' D s 0, y(2)--3, y ( 5 ) * < 3 and 

g> (m, )» 2 m, + 2 for rru £ 6 . 

Proof. <p(4) ~ 0 since ({03 , 0) is semiri­

gid. <p d ) = 3 follows immediately from Theorem 1 of 

[1] and from its proof. From Corollary 1 we have g>(5)& 

£ 42 . However, by constructing all relations of the 

power 12 on the set i 4, 2, 3? 4*, 5 I satisfying all 
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the well-known necessary conditions for semirigidity, we 

find out that none of them is semirigid (these considers* 

tions are omitted for technical reasons). Therefore 

<p(S) £ 45 * As the graph (i4,1,39*f5}, i(i,i) ; 

i*4f..,,5}u{a,i+4),im49...9Mui(£94),(394),(Sf3),(<r,Z)i) 

is semirigid, we have <p (£) m 43 . Let m, be an odd 

number, m, £ 6 9 i.*. y m, ;* 2 k, + 4, Jv s£ 3 . Put 

Xm i4, 29...9tn,}, X m {(<L9<o ) >, i m A9 29...9 m,} u {(i,i + 4)> 

A, * i,2,..., m,-4}ui(m.94)9 (49M,+ 4),(M, + 3, 2 )} -

Let mu be even, mv £ 6 9 mt ss 2^h , /f* & 3 . Put 

y« {4, ±9..., <m,\ yS *&iii, i); i m 49±,...9mv} u <(i,i + 

+ 4); i m 4929...,<m,- 4}u i(m%f4),(4, #, + 4 ) , (^,mv)} . 

Clearly \TL\ m 2m* + 2 , \S\ -» 2mt + 2 9 since both the 

graphs (X,&) and (YfS) are semirigid, we have 

y(m>) ** 2 m, + 2 for m, £. 6 . The proofs of semirigi­

dity of all relations given here are easy (they can be e.g. 

based upon Lemma 4) and therefore omitted. 

I thank Z. Hedrlin and J. Nefletfil for their helpful 

advice. 
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