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Commentationes Mathematics* Universitatis Carolinae 

12,2 (1971) 

DIFFERENTIAL OPERATORS AND G-STRUCTURES OF HIGHER ORDER 

Jarolim BURES, Praha 

0« Introduction. A differential operator D of or­

der fv on the manifold M of dimension tru (manifolds 

and maps are assumed to be C~°*-differentiable) can be 

expressed in every admissible coordinate system (c.s.) 

(*?...*!*) on M in the form: 

my $ a 

»mi$"*Cx)&?*-"-,'£~'*-"4>>> c>«...d**~ 

where oc., oc. . , ,,, are differentiable functions on M . 

Changing the coordinate system, we obtain the expression 

of D using another functions <&! . We ask if the 

coordinates can be changed in such a way that the func­

tions ot% expressed in the new c.s. are constant. We try 

to solve this problem only locally. The coefficients of 

the differential operator of order tu are transformed in 

such a way that we use the derivatives up to the order *, 

of the change of coordinates only. Thus the differential 

operator of order n. determines a geometrical object of 

order ft and determines a mapping of the principal fibre 

bundle of sv -frames HHf(M) into the standard #*-tan­

gent space F* m T* CK*-) . 
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The differential operator having in some c.a. constant 

coefficients, 

(i) it maps H* CM) onto an orbit of the group L% in 

F* (aee §3 ), 

(ii) it determines a class of conjugate (f -structures of 

order tv on M. , 

(iii) the (J -structures are integrable (see § 4) on the 

coordinate domain. 

Conversely, if the conditions (i) - (iii) are fulfil­

led, the considered differential operator has constant coe­

fficients. 

Guillemin and Singer in [31 solved this problem for 

coefficients at the highest derivatives transforming it in­

to a problem of integrability of (J -structures of order 

1 , This paper generalizes the solution on of this problem 

to all coefficients. These conditions will be examined in 

more detail in the next paper. 

1* Let us denote (following L11) by L^, the Lie 

group of all invertible tu -Jeta of maps from K/,v into 

£*/W' with source and target in 0 € K* . The composi­

tion of such two elements £ m Q?* f and ij • #*• g* ia 

given by ^ • *i * f • (4 • &) • 

If M ia a differentiate manifold (of class t°° ) 

and mn e M , we denote by 

A (m,) the set of all differentiable functions de­

fined on some neighbourhood of rm, *, 
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AQL<m,) c A(mi) the subset of all functiona which ha­

ve the value 0 at the point <JYV ; 

Ati(/m,)c A(mJ) the aub8et of all functions which 

are constant on aome neighbourhood of /m. $ 

A (mt)cA(m,) the subset of all multiples of 

tu + \ elements of A^ (<m>) . o 

The % -tangent space T£ (M) of the manifold M at 

the point rm may be defined as a vector space whose ele­

ments are linear functionala 

(1) Xt A Cm,) -* X 

auch that Jiff1 (an,) u \ («n,) c K*to X (see £1J>. 

If Jh> s (x1 ... x^) is a coordinate aystem in a 

neighbourhood of <m e id , then X e T ^ (M ) can be 

expressed uniquely in the form 

(2) X « ^ J* gjj t ... + * ^ ^ «^<, ^ ^ ' 

For JC m 4 9 we obtain the ordinary tangent space of the 

manifold. 

The space T*CM> -JX^ T £ CM ) can be endowed 

with a structure of a differentiable manifold such that 

T ^ C M ) ia a vector bundle over M . A section of the 

bundle T * C M ) is a map T> t li — » T*(M) auch that 

DC*) € T^ C M ) for all x e IL , and (2) shows th*t 

P is a differentiable operator of order -£/t on li . 

2. Let us denote by F* « T* CX"1) the *, -tangent 

space at 0 € *R/n' . If Css* ... z>m' ) ia a fixed c.s. 

on X* 7 then the x, -vector* 
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a* 

form a baais of P* . 

Every differentiable mapping <p of the manifold Till 

into the manifold H induced a differentiable map 

g£ t T*CM) -* T* C N ) 

given by 

(4) g>*CX)4 ~XC4*<p), X c T ^ C M ) , *€ AM(<p(m,)) . 

If <p ia a diffeomorphiam* then 9?* ia alao a diffeo-

morphiam for every H, and it holda 

i9.y)l - * * . r»* • 
How we define the action g> of the group L%, on F* • 

Every ©c e J*̂  ia given by a map f 1 X*—> %^ auch that 

4 (0) 9, 0 . The mapping *f determinea the mapping 4* : 

x T2(K*)-+ 7*(X*) depending on * « ^*# f only; it 

doea not depend on 4 . Let ua denote this induced mapp­

ing by oc and define jo C oc ) # P* — • F* by 

(5) p(oc)X m(3t~")X m t4m4)*X 

for X e ?* oc « ^ • 4 . 

It ft * $** g, 9 t h e n f>C<% ' / 3 ) X -» g> (ft > C(DC<SC)X ) . 

Lemma 1 £ 13 . 1*^ acta on F * effectively from the 

left. 

3* Let H*CH ) be the principal fibre bundle of 

H, -framea on M and let ar 1 H*C)A) —> M be the 
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canonical projection. 

The element 41 e H^CM) is the /*, -jet at Q e H"* 

of a local diffeomorphism F of a neighbourhood of o c 

a %» into M aatiafying FCo) m sr C^) . 

The mapping V1 ia a c.s. defined on a neighbourhood 

of ft (<fi) and it determinea an isomorphism 

(6) (F^)* t T^^Ck)—• F* 

which depends on Ji only and which does not depend on F « 

Let us denote, for every X € T%.c^ , by # (#>) * 

m C Tm* )£ X the element of F* obtained in the above 

deacribed way, and denote by 

(7) §x i or~Uir(ii)) —¥ T* 

the obtained mapping. 

If D is a differential operator of order /t on an 

open set li c Jl , then P can be treated as a field of 

n, -vectors on It , and we can construct the map 

(8) $3 s H*ca) -> F* 

auch that ^ (it) m tpCfrC4^ (*P>> • 

The Lie group L ^ acta on H* ( M) and alao on 

F* • Let ua examine <JL i^i • cc) . 

Let 4* » ** F , cc.*J * , then 41. *c m #* (To 4) , 

CFo 4 )-"m 4'* * T'4 and 

U F o * ) - * ! * * m Cr*)l (Tm4)$X m pCec) Q^C*.) . 

Lemma 2. The mapping A ia a differentiabla map­

ping of H* C M) into Y* , commuting with the action of 

tha group L* , ••§•$ 
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6 (jl ' oc) m pCoc) ̂  (fr) • 

Proof» The firat assertion follows directly expres­

sing § in local coordinates. The second assertion has 

been shown above* 

Remark. Choosing a c.s. on JJ" and a base of F*' 

in the sense of (3), $L is determined by the system of 

functions q^(^), ..» cp*"*^ (<p,) 

this equation corresponding to the expression of ID in the 

coordinate system (more accurately, in the germ of c.s.) gi­

ven by F"* at the point arC-ffc)C-fi,»0.#F). 

With any c.s. M, m (**... x^) on the neighbourhood U 

we can canonically associate a section X of the principal 

fibre bundle H*(Jd) over It in the following way: 

Let us denote by t% # Ji*
1' — • l"* the map defined by 

(10) *t Cx) MS (u + x ) (translation). 

For 7^0 e U , * , C|u0) -» ^0 , we have £ 0 « jfe;*CVP ) « 

tzK4(t^o(0))mlrC'l.t^o(0) , aM &(%,)* #2 (Jh-'ety,) 

is well defined and it is an element of H* (M) . 
lr 

If there exists a c.s. on the neighbourhood It such 

that V has constant coefficients with respect to it, then 

$ is constant on the section %(U) , and according 

to Lemma 2 we have 

T.etmfla 3, if there exists a c.s. on M in the neigh* 

bourhood V such that 3) expressed in it has constant 
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coefficients, then it holds: 

(11) *£> CHKCV)) is contained in one orbit of the 

action of the group L1^ on F* . 

Hence <£., CH*CY)) fills out the whole orbit. 

Condition (11) is therefore a necessary condition for 

the existence of a c s . in a neighbourhood of rm, c M 

such that D has constant coefficients in it. 

4. Our next task is to produce necessary and suffici­

ent conditions. We solve this problem locally. 

Let us assume that M is a neighbourhood of o € K^ , 

35 a differential operator of order ft on M satisfy­

ing (11), and denote by 0* the orbit ^CH^CM)) . Let us 

choose .ft e Ji* CM ) ; write & c&0) m £ € 0* and let 

(az c 1 ^ be the isotropic group o£ 2 with respect to the Action ,«.$., 

The following lemma is obvious. 

Lemma 3. £ is a closed subgroup of &%, and 

thus it is a Lie subgroup of 1%^ . 

Now. the main result is given by the following-

Proposition 1. Let D be a differential operator of 

order h, on a neighbourhood H of the point 0 e Jf* 

satisfying the condition (11). Let us choose a Z € Of m 

* f^CK^CM)) . Then £g m $g C Z) is a (Ĵ  -structure 

on M , where (3̂  is the isotropic group of z. . If xf ie 

another element of the orbit,then i^ and 3£ are conjuga­

te structures on JJ . 

Proof. The proposition follows from the bundle struc­

ture theorem for Lie groups. 
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Remark. A differential operator of order n, aatiafy-

ing the conditions of Prop. 1 on M determines a system of 

conjugate structures of order n, on M . 

Let ua now define the notiona of equivalence and inte-

grability for Gt -structures of order H, . Every diffeomorph* 

iam <fr i M —• N determines a diffeomorphiam <£ i Jf*CM)-* 

— • H^CM) . For 4% m £ F define g,*C>) m #* C%* F>. 

If G ia a Lie subgroup of V^ and 3J~*M, f-*-M 

are two d -atructuraa of order tu on M and H , reap, 

then we say that ^ and 7t are equivalent if there exists 

a diffeomorphiam g- ; M —> M auch that 9^C<5) *» r? . 

By the standard d -structure of order to on an open 

set 11 c JL*1' we mean a G -structure g> given by 

q^m <k,(x). <x , * 6 U , oc e <3 *> , 

Ji, being a fixed global c.s. and it being the canoni­

cal section determined by Jh on It . 

The <» -structure on M, ia called integrable if it 

ia equivalent to a standard 6 -structure of order n, on 

X* . Similarly as in the caae ft m 4 we may define the 

notions of the local equivalence and the local integrability. 

T,»mmq 4. The CJ -structure P of order /o on M ia 

integrable if and only if there is a c.s. it on M such 

that 31 CJld) ia a section of tP 

Bropoaition 2» Under the assumptions of Proposition 1 

the following statements are equivalent: 

(i) £ ia an integrable <*L -structure on M for 

some (and for all) 2 € 0 . 
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(ii) There ia a c.s. on K such that D ha a con­

stant coefficients in it. 

Example. It can be easily shown that D being an ope­

rator of the first order on M c &* , e.g. J) being a 

vector field on it , there is such a c.a. if and only if 

the field is nonsero everywhere on M • 
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